Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-5i\right)\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8-2i.
\frac{\left(3-5i\right)\left(8-2i\right)}{8^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-5i\right)\left(8-2i\right)}{68}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 8+3\times \left(-2i\right)-5i\times 8-5\left(-2\right)i^{2}}{68}
Multiply complex numbers 3-5i and 8-2i like you multiply binomials.
\frac{3\times 8+3\times \left(-2i\right)-5i\times 8-5\left(-2\right)\left(-1\right)}{68}
By definition, i^{2} is -1.
\frac{24-6i-40i-10}{68}
Do the multiplications in 3\times 8+3\times \left(-2i\right)-5i\times 8-5\left(-2\right)\left(-1\right).
\frac{24-10+\left(-6-40\right)i}{68}
Combine the real and imaginary parts in 24-6i-40i-10.
\frac{14-46i}{68}
Do the additions in 24-10+\left(-6-40\right)i.
\frac{7}{34}-\frac{23}{34}i
Divide 14-46i by 68 to get \frac{7}{34}-\frac{23}{34}i.
Re(\frac{\left(3-5i\right)\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)})
Multiply both numerator and denominator of \frac{3-5i}{8+2i} by the complex conjugate of the denominator, 8-2i.
Re(\frac{\left(3-5i\right)\left(8-2i\right)}{8^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-5i\right)\left(8-2i\right)}{68})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 8+3\times \left(-2i\right)-5i\times 8-5\left(-2\right)i^{2}}{68})
Multiply complex numbers 3-5i and 8-2i like you multiply binomials.
Re(\frac{3\times 8+3\times \left(-2i\right)-5i\times 8-5\left(-2\right)\left(-1\right)}{68})
By definition, i^{2} is -1.
Re(\frac{24-6i-40i-10}{68})
Do the multiplications in 3\times 8+3\times \left(-2i\right)-5i\times 8-5\left(-2\right)\left(-1\right).
Re(\frac{24-10+\left(-6-40\right)i}{68})
Combine the real and imaginary parts in 24-6i-40i-10.
Re(\frac{14-46i}{68})
Do the additions in 24-10+\left(-6-40\right)i.
Re(\frac{7}{34}-\frac{23}{34}i)
Divide 14-46i by 68 to get \frac{7}{34}-\frac{23}{34}i.
\frac{7}{34}
The real part of \frac{7}{34}-\frac{23}{34}i is \frac{7}{34}.