Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-5i\right)\left(5-3i\right)}{\left(5+3i\right)\left(5-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-3i.
\frac{\left(3-5i\right)\left(5-3i\right)}{5^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-5i\right)\left(5-3i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 5+3\times \left(-3i\right)-5i\times 5-5\left(-3\right)i^{2}}{34}
Multiply complex numbers 3-5i and 5-3i like you multiply binomials.
\frac{3\times 5+3\times \left(-3i\right)-5i\times 5-5\left(-3\right)\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{15-9i-25i-15}{34}
Do the multiplications in 3\times 5+3\times \left(-3i\right)-5i\times 5-5\left(-3\right)\left(-1\right).
\frac{15-15+\left(-9-25\right)i}{34}
Combine the real and imaginary parts in 15-9i-25i-15.
\frac{-34i}{34}
Do the additions in 15-15+\left(-9-25\right)i.
-i
Divide -34i by 34 to get -i.
Re(\frac{\left(3-5i\right)\left(5-3i\right)}{\left(5+3i\right)\left(5-3i\right)})
Multiply both numerator and denominator of \frac{3-5i}{5+3i} by the complex conjugate of the denominator, 5-3i.
Re(\frac{\left(3-5i\right)\left(5-3i\right)}{5^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-5i\right)\left(5-3i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 5+3\times \left(-3i\right)-5i\times 5-5\left(-3\right)i^{2}}{34})
Multiply complex numbers 3-5i and 5-3i like you multiply binomials.
Re(\frac{3\times 5+3\times \left(-3i\right)-5i\times 5-5\left(-3\right)\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{15-9i-25i-15}{34})
Do the multiplications in 3\times 5+3\times \left(-3i\right)-5i\times 5-5\left(-3\right)\left(-1\right).
Re(\frac{15-15+\left(-9-25\right)i}{34})
Combine the real and imaginary parts in 15-9i-25i-15.
Re(\frac{-34i}{34})
Do the additions in 15-15+\left(-9-25\right)i.
Re(-i)
Divide -34i by 34 to get -i.
0
The real part of -i is 0.