Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3-4x\right)\left(x+4\right)}{\left(x+4\right)\left(-x+4\right)}+\frac{\left(1+3x\right)\left(-x+4\right)}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4-x and 4+x is \left(x+4\right)\left(-x+4\right). Multiply \frac{3-4x}{4-x} times \frac{x+4}{x+4}. Multiply \frac{1+3x}{4+x} times \frac{-x+4}{-x+4}.
\frac{\left(3-4x\right)\left(x+4\right)+\left(1+3x\right)\left(-x+4\right)}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
Since \frac{\left(3-4x\right)\left(x+4\right)}{\left(x+4\right)\left(-x+4\right)} and \frac{\left(1+3x\right)\left(-x+4\right)}{\left(x+4\right)\left(-x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x+12-4x^{2}-16x+4-x-3x^{2}+12x}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
Do the multiplications in \left(3-4x\right)\left(x+4\right)+\left(1+3x\right)\left(-x+4\right).
\frac{-2x+16-7x^{2}}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
Combine like terms in 3x+12-4x^{2}-16x+4-x-3x^{2}+12x.
\frac{-2x+16-7x^{2}}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{-\left(-2x+16-7x^{2}\right)}{\left(x-4\right)\left(x+4\right)}-\frac{x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)\left(-x+4\right) and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x+4\right). Multiply \frac{-2x+16-7x^{2}}{\left(x+4\right)\left(-x+4\right)} times \frac{-1}{-1}.
\frac{-\left(-2x+16-7x^{2}\right)-x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)}
Since \frac{-\left(-2x+16-7x^{2}\right)}{\left(x-4\right)\left(x+4\right)} and \frac{x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-16+7x^{2}-x^{2}-22x}{\left(x-4\right)\left(x+4\right)}
Do the multiplications in -\left(-2x+16-7x^{2}\right)-x\left(x+22\right).
\frac{-20x-16+6x^{2}}{\left(x-4\right)\left(x+4\right)}
Combine like terms in 2x-16+7x^{2}-x^{2}-22x.
\frac{2\left(x-4\right)\left(3x+2\right)}{\left(x-4\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{-20x-16+6x^{2}}{\left(x-4\right)\left(x+4\right)}.
\frac{2\left(3x+2\right)}{x+4}
Cancel out x-4 in both numerator and denominator.
\frac{6x+4}{x+4}
Use the distributive property to multiply 2 by 3x+2.
\frac{\left(3-4x\right)\left(x+4\right)}{\left(x+4\right)\left(-x+4\right)}+\frac{\left(1+3x\right)\left(-x+4\right)}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4-x and 4+x is \left(x+4\right)\left(-x+4\right). Multiply \frac{3-4x}{4-x} times \frac{x+4}{x+4}. Multiply \frac{1+3x}{4+x} times \frac{-x+4}{-x+4}.
\frac{\left(3-4x\right)\left(x+4\right)+\left(1+3x\right)\left(-x+4\right)}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
Since \frac{\left(3-4x\right)\left(x+4\right)}{\left(x+4\right)\left(-x+4\right)} and \frac{\left(1+3x\right)\left(-x+4\right)}{\left(x+4\right)\left(-x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x+12-4x^{2}-16x+4-x-3x^{2}+12x}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
Do the multiplications in \left(3-4x\right)\left(x+4\right)+\left(1+3x\right)\left(-x+4\right).
\frac{-2x+16-7x^{2}}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{x^{2}-16}
Combine like terms in 3x+12-4x^{2}-16x+4-x-3x^{2}+12x.
\frac{-2x+16-7x^{2}}{\left(x+4\right)\left(-x+4\right)}-\frac{x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{-\left(-2x+16-7x^{2}\right)}{\left(x-4\right)\left(x+4\right)}-\frac{x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)\left(-x+4\right) and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x+4\right). Multiply \frac{-2x+16-7x^{2}}{\left(x+4\right)\left(-x+4\right)} times \frac{-1}{-1}.
\frac{-\left(-2x+16-7x^{2}\right)-x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)}
Since \frac{-\left(-2x+16-7x^{2}\right)}{\left(x-4\right)\left(x+4\right)} and \frac{x\left(x+22\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-16+7x^{2}-x^{2}-22x}{\left(x-4\right)\left(x+4\right)}
Do the multiplications in -\left(-2x+16-7x^{2}\right)-x\left(x+22\right).
\frac{-20x-16+6x^{2}}{\left(x-4\right)\left(x+4\right)}
Combine like terms in 2x-16+7x^{2}-x^{2}-22x.
\frac{2\left(x-4\right)\left(3x+2\right)}{\left(x-4\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{-20x-16+6x^{2}}{\left(x-4\right)\left(x+4\right)}.
\frac{2\left(3x+2\right)}{x+4}
Cancel out x-4 in both numerator and denominator.
\frac{6x+4}{x+4}
Use the distributive property to multiply 2 by 3x+2.