Solve for k
k = \frac{\sqrt{73} + 11}{8} \approx 2.443000468
k=\frac{11-\sqrt{73}}{8}\approx 0.306999532
Share
Copied to clipboard
-\left(1+k\right)\left(3-2k\right)+\left(k-2\right)\left(4-2k\right)=4\left(k-2\right)\left(k+1\right)
Variable k cannot be equal to any of the values -1,2 since division by zero is not defined. Multiply both sides of the equation by \left(k-2\right)\left(k+1\right), the least common multiple of 2-k,1+k.
\left(-1-k\right)\left(3-2k\right)+\left(k-2\right)\left(4-2k\right)=4\left(k-2\right)\left(k+1\right)
To find the opposite of 1+k, find the opposite of each term.
-3-k+2k^{2}+\left(k-2\right)\left(4-2k\right)=4\left(k-2\right)\left(k+1\right)
Use the distributive property to multiply -1-k by 3-2k and combine like terms.
-3-k+2k^{2}+8k-2k^{2}-8=4\left(k-2\right)\left(k+1\right)
Use the distributive property to multiply k-2 by 4-2k and combine like terms.
-3+7k+2k^{2}-2k^{2}-8=4\left(k-2\right)\left(k+1\right)
Combine -k and 8k to get 7k.
-3+7k-8=4\left(k-2\right)\left(k+1\right)
Combine 2k^{2} and -2k^{2} to get 0.
-11+7k=4\left(k-2\right)\left(k+1\right)
Subtract 8 from -3 to get -11.
-11+7k=\left(4k-8\right)\left(k+1\right)
Use the distributive property to multiply 4 by k-2.
-11+7k=4k^{2}-4k-8
Use the distributive property to multiply 4k-8 by k+1 and combine like terms.
-11+7k-4k^{2}=-4k-8
Subtract 4k^{2} from both sides.
-11+7k-4k^{2}+4k=-8
Add 4k to both sides.
-11+11k-4k^{2}=-8
Combine 7k and 4k to get 11k.
-11+11k-4k^{2}+8=0
Add 8 to both sides.
-3+11k-4k^{2}=0
Add -11 and 8 to get -3.
-4k^{2}+11k-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-11±\sqrt{11^{2}-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 11 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-11±\sqrt{121-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
Square 11.
k=\frac{-11±\sqrt{121+16\left(-3\right)}}{2\left(-4\right)}
Multiply -4 times -4.
k=\frac{-11±\sqrt{121-48}}{2\left(-4\right)}
Multiply 16 times -3.
k=\frac{-11±\sqrt{73}}{2\left(-4\right)}
Add 121 to -48.
k=\frac{-11±\sqrt{73}}{-8}
Multiply 2 times -4.
k=\frac{\sqrt{73}-11}{-8}
Now solve the equation k=\frac{-11±\sqrt{73}}{-8} when ± is plus. Add -11 to \sqrt{73}.
k=\frac{11-\sqrt{73}}{8}
Divide -11+\sqrt{73} by -8.
k=\frac{-\sqrt{73}-11}{-8}
Now solve the equation k=\frac{-11±\sqrt{73}}{-8} when ± is minus. Subtract \sqrt{73} from -11.
k=\frac{\sqrt{73}+11}{8}
Divide -11-\sqrt{73} by -8.
k=\frac{11-\sqrt{73}}{8} k=\frac{\sqrt{73}+11}{8}
The equation is now solved.
-\left(1+k\right)\left(3-2k\right)+\left(k-2\right)\left(4-2k\right)=4\left(k-2\right)\left(k+1\right)
Variable k cannot be equal to any of the values -1,2 since division by zero is not defined. Multiply both sides of the equation by \left(k-2\right)\left(k+1\right), the least common multiple of 2-k,1+k.
\left(-1-k\right)\left(3-2k\right)+\left(k-2\right)\left(4-2k\right)=4\left(k-2\right)\left(k+1\right)
To find the opposite of 1+k, find the opposite of each term.
-3-k+2k^{2}+\left(k-2\right)\left(4-2k\right)=4\left(k-2\right)\left(k+1\right)
Use the distributive property to multiply -1-k by 3-2k and combine like terms.
-3-k+2k^{2}+8k-2k^{2}-8=4\left(k-2\right)\left(k+1\right)
Use the distributive property to multiply k-2 by 4-2k and combine like terms.
-3+7k+2k^{2}-2k^{2}-8=4\left(k-2\right)\left(k+1\right)
Combine -k and 8k to get 7k.
-3+7k-8=4\left(k-2\right)\left(k+1\right)
Combine 2k^{2} and -2k^{2} to get 0.
-11+7k=4\left(k-2\right)\left(k+1\right)
Subtract 8 from -3 to get -11.
-11+7k=\left(4k-8\right)\left(k+1\right)
Use the distributive property to multiply 4 by k-2.
-11+7k=4k^{2}-4k-8
Use the distributive property to multiply 4k-8 by k+1 and combine like terms.
-11+7k-4k^{2}=-4k-8
Subtract 4k^{2} from both sides.
-11+7k-4k^{2}+4k=-8
Add 4k to both sides.
-11+11k-4k^{2}=-8
Combine 7k and 4k to get 11k.
11k-4k^{2}=-8+11
Add 11 to both sides.
11k-4k^{2}=3
Add -8 and 11 to get 3.
-4k^{2}+11k=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4k^{2}+11k}{-4}=\frac{3}{-4}
Divide both sides by -4.
k^{2}+\frac{11}{-4}k=\frac{3}{-4}
Dividing by -4 undoes the multiplication by -4.
k^{2}-\frac{11}{4}k=\frac{3}{-4}
Divide 11 by -4.
k^{2}-\frac{11}{4}k=-\frac{3}{4}
Divide 3 by -4.
k^{2}-\frac{11}{4}k+\left(-\frac{11}{8}\right)^{2}=-\frac{3}{4}+\left(-\frac{11}{8}\right)^{2}
Divide -\frac{11}{4}, the coefficient of the x term, by 2 to get -\frac{11}{8}. Then add the square of -\frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{11}{4}k+\frac{121}{64}=-\frac{3}{4}+\frac{121}{64}
Square -\frac{11}{8} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{11}{4}k+\frac{121}{64}=\frac{73}{64}
Add -\frac{3}{4} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k-\frac{11}{8}\right)^{2}=\frac{73}{64}
Factor k^{2}-\frac{11}{4}k+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{11}{8}\right)^{2}}=\sqrt{\frac{73}{64}}
Take the square root of both sides of the equation.
k-\frac{11}{8}=\frac{\sqrt{73}}{8} k-\frac{11}{8}=-\frac{\sqrt{73}}{8}
Simplify.
k=\frac{\sqrt{73}+11}{8} k=\frac{11-\sqrt{73}}{8}
Add \frac{11}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}