Evaluate
\frac{53}{85}+\frac{9}{85}i\approx 0.623529412+0.105882353i
Real Part
\frac{53}{85} = 0.6235294117647059
Share
Copied to clipboard
\frac{\left(3-2i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}+\frac{i}{2-i}
Multiply both numerator and denominator of \frac{3-2i}{4-i} by the complex conjugate of the denominator, 4+i.
\frac{14-5i}{17}+\frac{i}{2-i}
Do the multiplications in \frac{\left(3-2i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}.
\frac{14}{17}-\frac{5}{17}i+\frac{i}{2-i}
Divide 14-5i by 17 to get \frac{14}{17}-\frac{5}{17}i.
\frac{14}{17}-\frac{5}{17}i+\frac{i\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{i}{2-i} by the complex conjugate of the denominator, 2+i.
\frac{14}{17}-\frac{5}{17}i+\frac{-1+2i}{5}
Do the multiplications in \frac{i\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
\frac{14}{17}-\frac{5}{17}i+\left(-\frac{1}{5}+\frac{2}{5}i\right)
Divide -1+2i by 5 to get -\frac{1}{5}+\frac{2}{5}i.
\frac{53}{85}+\frac{9}{85}i
Add \frac{14}{17}-\frac{5}{17}i and -\frac{1}{5}+\frac{2}{5}i to get \frac{53}{85}+\frac{9}{85}i.
Re(\frac{\left(3-2i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}+\frac{i}{2-i})
Multiply both numerator and denominator of \frac{3-2i}{4-i} by the complex conjugate of the denominator, 4+i.
Re(\frac{14-5i}{17}+\frac{i}{2-i})
Do the multiplications in \frac{\left(3-2i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}.
Re(\frac{14}{17}-\frac{5}{17}i+\frac{i}{2-i})
Divide 14-5i by 17 to get \frac{14}{17}-\frac{5}{17}i.
Re(\frac{14}{17}-\frac{5}{17}i+\frac{i\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{14}{17}-\frac{5}{17}i+\frac{-1+2i}{5})
Do the multiplications in \frac{i\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(\frac{14}{17}-\frac{5}{17}i+\left(-\frac{1}{5}+\frac{2}{5}i\right))
Divide -1+2i by 5 to get -\frac{1}{5}+\frac{2}{5}i.
Re(\frac{53}{85}+\frac{9}{85}i)
Add \frac{14}{17}-\frac{5}{17}i and -\frac{1}{5}+\frac{2}{5}i to get \frac{53}{85}+\frac{9}{85}i.
\frac{53}{85}
The real part of \frac{53}{85}+\frac{9}{85}i is \frac{53}{85}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}