Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-2\sqrt{2}\right)\left(5+\sqrt{2}\right)}{\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}
Rationalize the denominator of \frac{3-2\sqrt{2}}{5-\sqrt{2}} by multiplying numerator and denominator by 5+\sqrt{2}.
\frac{\left(3-2\sqrt{2}\right)\left(5+\sqrt{2}\right)}{5^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-2\sqrt{2}\right)\left(5+\sqrt{2}\right)}{25-2}
Square 5. Square \sqrt{2}.
\frac{\left(3-2\sqrt{2}\right)\left(5+\sqrt{2}\right)}{23}
Subtract 2 from 25 to get 23.
\frac{15+3\sqrt{2}-10\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{23}
Apply the distributive property by multiplying each term of 3-2\sqrt{2} by each term of 5+\sqrt{2}.
\frac{15-7\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{23}
Combine 3\sqrt{2} and -10\sqrt{2} to get -7\sqrt{2}.
\frac{15-7\sqrt{2}-2\times 2}{23}
The square of \sqrt{2} is 2.
\frac{15-7\sqrt{2}-4}{23}
Multiply -2 and 2 to get -4.
\frac{11-7\sqrt{2}}{23}
Subtract 4 from 15 to get 11.