Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Rationalize the denominator of \frac{3-\sqrt{7}}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
\frac{\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{9-7}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Square 3. Square \sqrt{7}.
\frac{\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{2}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Subtract 7 from 9 to get 2.
\frac{\left(3-\sqrt{7}\right)^{2}}{2}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Multiply 3-\sqrt{7} and 3-\sqrt{7} to get \left(3-\sqrt{7}\right)^{2}.
\frac{9-6\sqrt{7}+\left(\sqrt{7}\right)^{2}}{2}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{7}\right)^{2}.
\frac{9-6\sqrt{7}+7}{2}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
The square of \sqrt{7} is 7.
\frac{16-6\sqrt{7}}{2}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Add 9 and 7 to get 16.
8-3\sqrt{7}+\frac{3+\sqrt{7}}{3-\sqrt{7}}
Divide each term of 16-6\sqrt{7} by 2 to get 8-3\sqrt{7}.
8-3\sqrt{7}+\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}
Rationalize the denominator of \frac{3+\sqrt{7}}{3-\sqrt{7}} by multiplying numerator and denominator by 3+\sqrt{7}.
8-3\sqrt{7}+\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8-3\sqrt{7}+\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{9-7}
Square 3. Square \sqrt{7}.
8-3\sqrt{7}+\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{2}
Subtract 7 from 9 to get 2.
8-3\sqrt{7}+\frac{\left(3+\sqrt{7}\right)^{2}}{2}
Multiply 3+\sqrt{7} and 3+\sqrt{7} to get \left(3+\sqrt{7}\right)^{2}.
8-3\sqrt{7}+\frac{9+6\sqrt{7}+\left(\sqrt{7}\right)^{2}}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{7}\right)^{2}.
8-3\sqrt{7}+\frac{9+6\sqrt{7}+7}{2}
The square of \sqrt{7} is 7.
8-3\sqrt{7}+\frac{16+6\sqrt{7}}{2}
Add 9 and 7 to get 16.
8-3\sqrt{7}+8+3\sqrt{7}
Divide each term of 16+6\sqrt{7} by 2 to get 8+3\sqrt{7}.
16-3\sqrt{7}+3\sqrt{7}
Add 8 and 8 to get 16.
16
Combine -3\sqrt{7} and 3\sqrt{7} to get 0.