Evaluate
-\frac{y+27}{\left(y-5\right)\left(y-2\right)\left(y+3\right)}
Expand
-\frac{y+27}{\left(y-5\right)\left(y-2\right)\left(y+3\right)}
Graph
Share
Copied to clipboard
\frac{3y-15-4\left(y+3\right)}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Use the distributive property to multiply 3 by y-5.
\frac{3y-15-4y-12}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Use the distributive property to multiply -4 by y+3.
\frac{-y-15-12}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Combine 3y and -4y to get -y.
\frac{-y-27}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Subtract 12 from -15 to get -27.
\frac{-y-27}{\left(y^{2}-2y+3y-6\right)\left(y-5\right)}
Apply the distributive property by multiplying each term of y+3 by each term of y-2.
\frac{-y-27}{\left(y^{2}+y-6\right)\left(y-5\right)}
Combine -2y and 3y to get y.
\frac{-y-27}{y^{3}-5y^{2}+y^{2}-5y-6y+30}
Apply the distributive property by multiplying each term of y^{2}+y-6 by each term of y-5.
\frac{-y-27}{y^{3}-4y^{2}-5y-6y+30}
Combine -5y^{2} and y^{2} to get -4y^{2}.
\frac{-y-27}{y^{3}-4y^{2}-11y+30}
Combine -5y and -6y to get -11y.
\frac{3y-15-4\left(y+3\right)}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Use the distributive property to multiply 3 by y-5.
\frac{3y-15-4y-12}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Use the distributive property to multiply -4 by y+3.
\frac{-y-15-12}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Combine 3y and -4y to get -y.
\frac{-y-27}{\left(y+3\right)\left(y-2\right)\left(y-5\right)}
Subtract 12 from -15 to get -27.
\frac{-y-27}{\left(y^{2}-2y+3y-6\right)\left(y-5\right)}
Apply the distributive property by multiplying each term of y+3 by each term of y-2.
\frac{-y-27}{\left(y^{2}+y-6\right)\left(y-5\right)}
Combine -2y and 3y to get y.
\frac{-y-27}{y^{3}-5y^{2}+y^{2}-5y-6y+30}
Apply the distributive property by multiplying each term of y^{2}+y-6 by each term of y-5.
\frac{-y-27}{y^{3}-4y^{2}-5y-6y+30}
Combine -5y^{2} and y^{2} to get -4y^{2}.
\frac{-y-27}{y^{3}-4y^{2}-11y+30}
Combine -5y and -6y to get -11y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}