Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\times 3\left(x-2\right)-4\left(20x-5\right)=184x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of 4,x.
3x^{2}-2x\times 3-4\left(20x-5\right)=184x
Use the distributive property to multiply x\times 3 by x-2.
3x^{2}-6x-4\left(20x-5\right)=184x
Multiply -2 and 3 to get -6.
3x^{2}-6x-80x+20=184x
Use the distributive property to multiply -4 by 20x-5.
3x^{2}-86x+20=184x
Combine -6x and -80x to get -86x.
3x^{2}-86x+20-184x=0
Subtract 184x from both sides.
3x^{2}-270x+20=0
Combine -86x and -184x to get -270x.
x=\frac{-\left(-270\right)±\sqrt{\left(-270\right)^{2}-4\times 3\times 20}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -270 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-270\right)±\sqrt{72900-4\times 3\times 20}}{2\times 3}
Square -270.
x=\frac{-\left(-270\right)±\sqrt{72900-12\times 20}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-270\right)±\sqrt{72900-240}}{2\times 3}
Multiply -12 times 20.
x=\frac{-\left(-270\right)±\sqrt{72660}}{2\times 3}
Add 72900 to -240.
x=\frac{-\left(-270\right)±2\sqrt{18165}}{2\times 3}
Take the square root of 72660.
x=\frac{270±2\sqrt{18165}}{2\times 3}
The opposite of -270 is 270.
x=\frac{270±2\sqrt{18165}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{18165}+270}{6}
Now solve the equation x=\frac{270±2\sqrt{18165}}{6} when ± is plus. Add 270 to 2\sqrt{18165}.
x=\frac{\sqrt{18165}}{3}+45
Divide 270+2\sqrt{18165} by 6.
x=\frac{270-2\sqrt{18165}}{6}
Now solve the equation x=\frac{270±2\sqrt{18165}}{6} when ± is minus. Subtract 2\sqrt{18165} from 270.
x=-\frac{\sqrt{18165}}{3}+45
Divide 270-2\sqrt{18165} by 6.
x=\frac{\sqrt{18165}}{3}+45 x=-\frac{\sqrt{18165}}{3}+45
The equation is now solved.
x\times 3\left(x-2\right)-4\left(20x-5\right)=184x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of 4,x.
3x^{2}-2x\times 3-4\left(20x-5\right)=184x
Use the distributive property to multiply x\times 3 by x-2.
3x^{2}-6x-4\left(20x-5\right)=184x
Multiply -2 and 3 to get -6.
3x^{2}-6x-80x+20=184x
Use the distributive property to multiply -4 by 20x-5.
3x^{2}-86x+20=184x
Combine -6x and -80x to get -86x.
3x^{2}-86x+20-184x=0
Subtract 184x from both sides.
3x^{2}-270x+20=0
Combine -86x and -184x to get -270x.
3x^{2}-270x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-270x}{3}=-\frac{20}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{270}{3}\right)x=-\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-90x=-\frac{20}{3}
Divide -270 by 3.
x^{2}-90x+\left(-45\right)^{2}=-\frac{20}{3}+\left(-45\right)^{2}
Divide -90, the coefficient of the x term, by 2 to get -45. Then add the square of -45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-90x+2025=-\frac{20}{3}+2025
Square -45.
x^{2}-90x+2025=\frac{6055}{3}
Add -\frac{20}{3} to 2025.
\left(x-45\right)^{2}=\frac{6055}{3}
Factor x^{2}-90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-45\right)^{2}}=\sqrt{\frac{6055}{3}}
Take the square root of both sides of the equation.
x-45=\frac{\sqrt{18165}}{3} x-45=-\frac{\sqrt{18165}}{3}
Simplify.
x=\frac{\sqrt{18165}}{3}+45 x=-\frac{\sqrt{18165}}{3}+45
Add 45 to both sides of the equation.