Solve for x
x=\frac{54}{95}\approx 0.568421053
Graph
Share
Copied to clipboard
\frac{3x-3}{0.2}-2.5=\frac{0.4-2x}{0.5}-7.5
Use the distributive property to multiply 3 by x-1.
\frac{3x}{0.2}+\frac{-3}{0.2}-2.5=\frac{0.4-2x}{0.5}-7.5
Divide each term of 3x-3 by 0.2 to get \frac{3x}{0.2}+\frac{-3}{0.2}.
15x+\frac{-3}{0.2}-2.5=\frac{0.4-2x}{0.5}-7.5
Divide 3x by 0.2 to get 15x.
15x+\frac{-30}{2}-2.5=\frac{0.4-2x}{0.5}-7.5
Expand \frac{-3}{0.2} by multiplying both numerator and the denominator by 10.
15x-15-2.5=\frac{0.4-2x}{0.5}-7.5
Divide -30 by 2 to get -15.
15x-17.5=\frac{0.4-2x}{0.5}-7.5
Subtract 2.5 from -15 to get -17.5.
15x-17.5=\frac{0.4}{0.5}+\frac{-2x}{0.5}-7.5
Divide each term of 0.4-2x by 0.5 to get \frac{0.4}{0.5}+\frac{-2x}{0.5}.
15x-17.5=\frac{4}{5}+\frac{-2x}{0.5}-7.5
Expand \frac{0.4}{0.5} by multiplying both numerator and the denominator by 10.
15x-17.5=\frac{4}{5}-4x-7.5
Divide -2x by 0.5 to get -4x.
15x-17.5=\frac{4}{5}-4x-\frac{15}{2}
Convert decimal number 7.5 to fraction \frac{75}{10}. Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
15x-17.5=\frac{8}{10}-4x-\frac{75}{10}
Least common multiple of 5 and 2 is 10. Convert \frac{4}{5} and \frac{15}{2} to fractions with denominator 10.
15x-17.5=\frac{8-75}{10}-4x
Since \frac{8}{10} and \frac{75}{10} have the same denominator, subtract them by subtracting their numerators.
15x-17.5=-\frac{67}{10}-4x
Subtract 75 from 8 to get -67.
15x-17.5+4x=-\frac{67}{10}
Add 4x to both sides.
19x-17.5=-\frac{67}{10}
Combine 15x and 4x to get 19x.
19x=-\frac{67}{10}+17.5
Add 17.5 to both sides.
19x=-\frac{67}{10}+\frac{35}{2}
Convert decimal number 17.5 to fraction \frac{175}{10}. Reduce the fraction \frac{175}{10} to lowest terms by extracting and canceling out 5.
19x=-\frac{67}{10}+\frac{175}{10}
Least common multiple of 10 and 2 is 10. Convert -\frac{67}{10} and \frac{35}{2} to fractions with denominator 10.
19x=\frac{-67+175}{10}
Since -\frac{67}{10} and \frac{175}{10} have the same denominator, add them by adding their numerators.
19x=\frac{108}{10}
Add -67 and 175 to get 108.
19x=\frac{54}{5}
Reduce the fraction \frac{108}{10} to lowest terms by extracting and canceling out 2.
x=\frac{\frac{54}{5}}{19}
Divide both sides by 19.
x=\frac{54}{5\times 19}
Express \frac{\frac{54}{5}}{19} as a single fraction.
x=\frac{54}{95}
Multiply 5 and 19 to get 95.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}