Solve for x (complex solution)
x=\frac{\sqrt{494}i}{10}+\frac{2}{5}\approx 0.4+2.222611077i
x=-\frac{\sqrt{494}i}{10}+\frac{2}{5}\approx 0.4-2.222611077i
Graph
Share
Copied to clipboard
6\times 3\left(-x+2\right)+40x\left(-2x+1\right)=30x\left(-3x+1\right)-15
Multiply both sides of the equation by 30, the least common multiple of 5,3,2.
18\left(-x+2\right)+40x\left(-2x+1\right)=30x\left(-3x+1\right)-15
Multiply 6 and 3 to get 18.
18\left(-x\right)+36+40x\left(-2x+1\right)=30x\left(-3x+1\right)-15
Use the distributive property to multiply 18 by -x+2.
18\left(-x\right)+36-80x^{2}+40x=30x\left(-3x+1\right)-15
Use the distributive property to multiply 40x by -2x+1.
18\left(-x\right)+36-80x^{2}+40x=-90x^{2}+30x-15
Use the distributive property to multiply 30x by -3x+1.
18\left(-x\right)+36-80x^{2}+40x+90x^{2}=30x-15
Add 90x^{2} to both sides.
18\left(-x\right)+36+10x^{2}+40x=30x-15
Combine -80x^{2} and 90x^{2} to get 10x^{2}.
18\left(-x\right)+36+10x^{2}+40x-30x=-15
Subtract 30x from both sides.
18\left(-x\right)+36+10x^{2}+10x=-15
Combine 40x and -30x to get 10x.
18\left(-x\right)+36+10x^{2}+10x+15=0
Add 15 to both sides.
18\left(-x\right)+51+10x^{2}+10x=0
Add 36 and 15 to get 51.
-18x+51+10x^{2}+10x=0
Multiply 18 and -1 to get -18.
-8x+51+10x^{2}=0
Combine -18x and 10x to get -8x.
10x^{2}-8x+51=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 10\times 51}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -8 for b, and 51 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 10\times 51}}{2\times 10}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-40\times 51}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-8\right)±\sqrt{64-2040}}{2\times 10}
Multiply -40 times 51.
x=\frac{-\left(-8\right)±\sqrt{-1976}}{2\times 10}
Add 64 to -2040.
x=\frac{-\left(-8\right)±2\sqrt{494}i}{2\times 10}
Take the square root of -1976.
x=\frac{8±2\sqrt{494}i}{2\times 10}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{494}i}{20}
Multiply 2 times 10.
x=\frac{8+2\sqrt{494}i}{20}
Now solve the equation x=\frac{8±2\sqrt{494}i}{20} when ± is plus. Add 8 to 2i\sqrt{494}.
x=\frac{\sqrt{494}i}{10}+\frac{2}{5}
Divide 8+2i\sqrt{494} by 20.
x=\frac{-2\sqrt{494}i+8}{20}
Now solve the equation x=\frac{8±2\sqrt{494}i}{20} when ± is minus. Subtract 2i\sqrt{494} from 8.
x=-\frac{\sqrt{494}i}{10}+\frac{2}{5}
Divide 8-2i\sqrt{494} by 20.
x=\frac{\sqrt{494}i}{10}+\frac{2}{5} x=-\frac{\sqrt{494}i}{10}+\frac{2}{5}
The equation is now solved.
6\times 3\left(-x+2\right)+40x\left(-2x+1\right)=30x\left(-3x+1\right)-15
Multiply both sides of the equation by 30, the least common multiple of 5,3,2.
18\left(-x+2\right)+40x\left(-2x+1\right)=30x\left(-3x+1\right)-15
Multiply 6 and 3 to get 18.
18\left(-x\right)+36+40x\left(-2x+1\right)=30x\left(-3x+1\right)-15
Use the distributive property to multiply 18 by -x+2.
18\left(-x\right)+36-80x^{2}+40x=30x\left(-3x+1\right)-15
Use the distributive property to multiply 40x by -2x+1.
18\left(-x\right)+36-80x^{2}+40x=-90x^{2}+30x-15
Use the distributive property to multiply 30x by -3x+1.
18\left(-x\right)+36-80x^{2}+40x+90x^{2}=30x-15
Add 90x^{2} to both sides.
18\left(-x\right)+36+10x^{2}+40x=30x-15
Combine -80x^{2} and 90x^{2} to get 10x^{2}.
18\left(-x\right)+36+10x^{2}+40x-30x=-15
Subtract 30x from both sides.
18\left(-x\right)+36+10x^{2}+10x=-15
Combine 40x and -30x to get 10x.
18\left(-x\right)+10x^{2}+10x=-15-36
Subtract 36 from both sides.
18\left(-x\right)+10x^{2}+10x=-51
Subtract 36 from -15 to get -51.
-18x+10x^{2}+10x=-51
Multiply 18 and -1 to get -18.
-8x+10x^{2}=-51
Combine -18x and 10x to get -8x.
10x^{2}-8x=-51
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-8x}{10}=-\frac{51}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{8}{10}\right)x=-\frac{51}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{4}{5}x=-\frac{51}{10}
Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=-\frac{51}{10}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=-\frac{51}{10}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{5}x+\frac{4}{25}=-\frac{247}{50}
Add -\frac{51}{10} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{5}\right)^{2}=-\frac{247}{50}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{-\frac{247}{50}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{\sqrt{494}i}{10} x-\frac{2}{5}=-\frac{\sqrt{494}i}{10}
Simplify.
x=\frac{\sqrt{494}i}{10}+\frac{2}{5} x=-\frac{\sqrt{494}i}{10}+\frac{2}{5}
Add \frac{2}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}