Solve for x
x = \frac{451}{320} = 1\frac{131}{320} = 1.409375
Graph
Share
Copied to clipboard
2\times 3\times \frac{195}{128}-3\times 5x=-12
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6\times \frac{195}{128}-3\times 5x=-12
Multiply 2 and 3 to get 6.
\frac{6\times 195}{128}-3\times 5x=-12
Express 6\times \frac{195}{128} as a single fraction.
\frac{1170}{128}-3\times 5x=-12
Multiply 6 and 195 to get 1170.
\frac{585}{64}-3\times 5x=-12
Reduce the fraction \frac{1170}{128} to lowest terms by extracting and canceling out 2.
\frac{585}{64}-15x=-12
Multiply -3 and 5 to get -15.
-15x=-12-\frac{585}{64}
Subtract \frac{585}{64} from both sides.
-15x=-\frac{768}{64}-\frac{585}{64}
Convert -12 to fraction -\frac{768}{64}.
-15x=\frac{-768-585}{64}
Since -\frac{768}{64} and \frac{585}{64} have the same denominator, subtract them by subtracting their numerators.
-15x=-\frac{1353}{64}
Subtract 585 from -768 to get -1353.
x=\frac{-\frac{1353}{64}}{-15}
Divide both sides by -15.
x=\frac{-1353}{64\left(-15\right)}
Express \frac{-\frac{1353}{64}}{-15} as a single fraction.
x=\frac{-1353}{-960}
Multiply 64 and -15 to get -960.
x=\frac{451}{320}
Reduce the fraction \frac{-1353}{-960} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}