Evaluate
\frac{8}{x}
Expand
\frac{8}{x}
Graph
Share
Copied to clipboard
\frac{3\left(-x+1\right)}{x\left(-x+1\right)}-\frac{6x}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{3}{x} times \frac{-x+1}{-x+1}. Multiply \frac{6}{1-x} times \frac{x}{x}.
\frac{3\left(-x+1\right)-6x}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
Since \frac{3\left(-x+1\right)}{x\left(-x+1\right)} and \frac{6x}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x+3-6x}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
Do the multiplications in 3\left(-x+1\right)-6x.
\frac{-9x+3}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
Combine like terms in -3x+3-6x.
\frac{-9x+3}{x\left(-x+1\right)}-\frac{x+5}{x\left(x-1\right)}
Factor x^{2}-x.
\frac{-\left(-9x+3\right)}{x\left(x-1\right)}-\frac{x+5}{x\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+1\right) and x\left(x-1\right) is x\left(x-1\right). Multiply \frac{-9x+3}{x\left(-x+1\right)} times \frac{-1}{-1}.
\frac{-\left(-9x+3\right)-\left(x+5\right)}{x\left(x-1\right)}
Since \frac{-\left(-9x+3\right)}{x\left(x-1\right)} and \frac{x+5}{x\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9x-3-x-5}{x\left(x-1\right)}
Do the multiplications in -\left(-9x+3\right)-\left(x+5\right).
\frac{8x-8}{x\left(x-1\right)}
Combine like terms in 9x-3-x-5.
\frac{8\left(x-1\right)}{x\left(x-1\right)}
Factor the expressions that are not already factored in \frac{8x-8}{x\left(x-1\right)}.
\frac{8}{x}
Cancel out x-1 in both numerator and denominator.
\frac{3\left(-x+1\right)}{x\left(-x+1\right)}-\frac{6x}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{3}{x} times \frac{-x+1}{-x+1}. Multiply \frac{6}{1-x} times \frac{x}{x}.
\frac{3\left(-x+1\right)-6x}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
Since \frac{3\left(-x+1\right)}{x\left(-x+1\right)} and \frac{6x}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x+3-6x}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
Do the multiplications in 3\left(-x+1\right)-6x.
\frac{-9x+3}{x\left(-x+1\right)}-\frac{x+5}{x^{2}-x}
Combine like terms in -3x+3-6x.
\frac{-9x+3}{x\left(-x+1\right)}-\frac{x+5}{x\left(x-1\right)}
Factor x^{2}-x.
\frac{-\left(-9x+3\right)}{x\left(x-1\right)}-\frac{x+5}{x\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+1\right) and x\left(x-1\right) is x\left(x-1\right). Multiply \frac{-9x+3}{x\left(-x+1\right)} times \frac{-1}{-1}.
\frac{-\left(-9x+3\right)-\left(x+5\right)}{x\left(x-1\right)}
Since \frac{-\left(-9x+3\right)}{x\left(x-1\right)} and \frac{x+5}{x\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9x-3-x-5}{x\left(x-1\right)}
Do the multiplications in -\left(-9x+3\right)-\left(x+5\right).
\frac{8x-8}{x\left(x-1\right)}
Combine like terms in 9x-3-x-5.
\frac{8\left(x-1\right)}{x\left(x-1\right)}
Factor the expressions that are not already factored in \frac{8x-8}{x\left(x-1\right)}.
\frac{8}{x}
Cancel out x-1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}