Solve for x
x = \frac{\sqrt{15529} + 125}{4} \approx 62.403852089
x=\frac{125-\sqrt{15529}}{4}\approx 0.096147911
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 3 } { x } ( 2 - \frac { 1 } { 2 } x ) + x + 3 = 64
Share
Copied to clipboard
2\times 3\left(2-\frac{1}{2}x\right)+2xx+2x\times 3=128x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
6\left(2-\frac{1}{2}x\right)+2xx+2x\times 3=128x
Multiply 2 and 3 to get 6.
12+6\left(-\frac{1}{2}\right)x+2xx+2x\times 3=128x
Use the distributive property to multiply 6 by 2-\frac{1}{2}x.
12+\frac{6\left(-1\right)}{2}x+2xx+2x\times 3=128x
Express 6\left(-\frac{1}{2}\right) as a single fraction.
12+\frac{-6}{2}x+2xx+2x\times 3=128x
Multiply 6 and -1 to get -6.
12-3x+2xx+2x\times 3=128x
Divide -6 by 2 to get -3.
12-3x+2x^{2}+2x\times 3=128x
Multiply x and x to get x^{2}.
12-3x+2x^{2}+6x=128x
Multiply 2 and 3 to get 6.
12+3x+2x^{2}=128x
Combine -3x and 6x to get 3x.
12+3x+2x^{2}-128x=0
Subtract 128x from both sides.
12-125x+2x^{2}=0
Combine 3x and -128x to get -125x.
2x^{2}-125x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-125\right)±\sqrt{\left(-125\right)^{2}-4\times 2\times 12}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -125 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-125\right)±\sqrt{15625-4\times 2\times 12}}{2\times 2}
Square -125.
x=\frac{-\left(-125\right)±\sqrt{15625-8\times 12}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-125\right)±\sqrt{15625-96}}{2\times 2}
Multiply -8 times 12.
x=\frac{-\left(-125\right)±\sqrt{15529}}{2\times 2}
Add 15625 to -96.
x=\frac{125±\sqrt{15529}}{2\times 2}
The opposite of -125 is 125.
x=\frac{125±\sqrt{15529}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{15529}+125}{4}
Now solve the equation x=\frac{125±\sqrt{15529}}{4} when ± is plus. Add 125 to \sqrt{15529}.
x=\frac{125-\sqrt{15529}}{4}
Now solve the equation x=\frac{125±\sqrt{15529}}{4} when ± is minus. Subtract \sqrt{15529} from 125.
x=\frac{\sqrt{15529}+125}{4} x=\frac{125-\sqrt{15529}}{4}
The equation is now solved.
2\times 3\left(2-\frac{1}{2}x\right)+2xx+2x\times 3=128x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
6\left(2-\frac{1}{2}x\right)+2xx+2x\times 3=128x
Multiply 2 and 3 to get 6.
12+6\left(-\frac{1}{2}\right)x+2xx+2x\times 3=128x
Use the distributive property to multiply 6 by 2-\frac{1}{2}x.
12+\frac{6\left(-1\right)}{2}x+2xx+2x\times 3=128x
Express 6\left(-\frac{1}{2}\right) as a single fraction.
12+\frac{-6}{2}x+2xx+2x\times 3=128x
Multiply 6 and -1 to get -6.
12-3x+2xx+2x\times 3=128x
Divide -6 by 2 to get -3.
12-3x+2x^{2}+2x\times 3=128x
Multiply x and x to get x^{2}.
12-3x+2x^{2}+6x=128x
Multiply 2 and 3 to get 6.
12+3x+2x^{2}=128x
Combine -3x and 6x to get 3x.
12+3x+2x^{2}-128x=0
Subtract 128x from both sides.
12-125x+2x^{2}=0
Combine 3x and -128x to get -125x.
-125x+2x^{2}=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
2x^{2}-125x=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-125x}{2}=-\frac{12}{2}
Divide both sides by 2.
x^{2}-\frac{125}{2}x=-\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{125}{2}x=-6
Divide -12 by 2.
x^{2}-\frac{125}{2}x+\left(-\frac{125}{4}\right)^{2}=-6+\left(-\frac{125}{4}\right)^{2}
Divide -\frac{125}{2}, the coefficient of the x term, by 2 to get -\frac{125}{4}. Then add the square of -\frac{125}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{125}{2}x+\frac{15625}{16}=-6+\frac{15625}{16}
Square -\frac{125}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{125}{2}x+\frac{15625}{16}=\frac{15529}{16}
Add -6 to \frac{15625}{16}.
\left(x-\frac{125}{4}\right)^{2}=\frac{15529}{16}
Factor x^{2}-\frac{125}{2}x+\frac{15625}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{125}{4}\right)^{2}}=\sqrt{\frac{15529}{16}}
Take the square root of both sides of the equation.
x-\frac{125}{4}=\frac{\sqrt{15529}}{4} x-\frac{125}{4}=-\frac{\sqrt{15529}}{4}
Simplify.
x=\frac{\sqrt{15529}+125}{4} x=\frac{125-\sqrt{15529}}{4}
Add \frac{125}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}