Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(7x-14\right)\times 3-\left(x+2\right)\times 9=105\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-2\right)\left(x+2\right), the least common multiple of x+2,7x-14.
21x-42-\left(x+2\right)\times 9=105\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 7x-14 by 3.
21x-42-\left(9x+18\right)=105\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x+2 by 9.
21x-42-9x-18=105\left(x-2\right)\left(x+2\right)
To find the opposite of 9x+18, find the opposite of each term.
12x-42-18=105\left(x-2\right)\left(x+2\right)
Combine 21x and -9x to get 12x.
12x-60=105\left(x-2\right)\left(x+2\right)
Subtract 18 from -42 to get -60.
12x-60=\left(105x-210\right)\left(x+2\right)
Use the distributive property to multiply 105 by x-2.
12x-60=105x^{2}-420
Use the distributive property to multiply 105x-210 by x+2 and combine like terms.
12x-60-105x^{2}=-420
Subtract 105x^{2} from both sides.
12x-60-105x^{2}+420=0
Add 420 to both sides.
12x+360-105x^{2}=0
Add -60 and 420 to get 360.
-105x^{2}+12x+360=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-105\right)\times 360}}{2\left(-105\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -105 for a, 12 for b, and 360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-105\right)\times 360}}{2\left(-105\right)}
Square 12.
x=\frac{-12±\sqrt{144+420\times 360}}{2\left(-105\right)}
Multiply -4 times -105.
x=\frac{-12±\sqrt{144+151200}}{2\left(-105\right)}
Multiply 420 times 360.
x=\frac{-12±\sqrt{151344}}{2\left(-105\right)}
Add 144 to 151200.
x=\frac{-12±12\sqrt{1051}}{2\left(-105\right)}
Take the square root of 151344.
x=\frac{-12±12\sqrt{1051}}{-210}
Multiply 2 times -105.
x=\frac{12\sqrt{1051}-12}{-210}
Now solve the equation x=\frac{-12±12\sqrt{1051}}{-210} when ± is plus. Add -12 to 12\sqrt{1051}.
x=\frac{2-2\sqrt{1051}}{35}
Divide -12+12\sqrt{1051} by -210.
x=\frac{-12\sqrt{1051}-12}{-210}
Now solve the equation x=\frac{-12±12\sqrt{1051}}{-210} when ± is minus. Subtract 12\sqrt{1051} from -12.
x=\frac{2\sqrt{1051}+2}{35}
Divide -12-12\sqrt{1051} by -210.
x=\frac{2-2\sqrt{1051}}{35} x=\frac{2\sqrt{1051}+2}{35}
The equation is now solved.
\left(7x-14\right)\times 3-\left(x+2\right)\times 9=105\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-2\right)\left(x+2\right), the least common multiple of x+2,7x-14.
21x-42-\left(x+2\right)\times 9=105\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 7x-14 by 3.
21x-42-\left(9x+18\right)=105\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x+2 by 9.
21x-42-9x-18=105\left(x-2\right)\left(x+2\right)
To find the opposite of 9x+18, find the opposite of each term.
12x-42-18=105\left(x-2\right)\left(x+2\right)
Combine 21x and -9x to get 12x.
12x-60=105\left(x-2\right)\left(x+2\right)
Subtract 18 from -42 to get -60.
12x-60=\left(105x-210\right)\left(x+2\right)
Use the distributive property to multiply 105 by x-2.
12x-60=105x^{2}-420
Use the distributive property to multiply 105x-210 by x+2 and combine like terms.
12x-60-105x^{2}=-420
Subtract 105x^{2} from both sides.
12x-105x^{2}=-420+60
Add 60 to both sides.
12x-105x^{2}=-360
Add -420 and 60 to get -360.
-105x^{2}+12x=-360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-105x^{2}+12x}{-105}=-\frac{360}{-105}
Divide both sides by -105.
x^{2}+\frac{12}{-105}x=-\frac{360}{-105}
Dividing by -105 undoes the multiplication by -105.
x^{2}-\frac{4}{35}x=-\frac{360}{-105}
Reduce the fraction \frac{12}{-105} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{35}x=\frac{24}{7}
Reduce the fraction \frac{-360}{-105} to lowest terms by extracting and canceling out 15.
x^{2}-\frac{4}{35}x+\left(-\frac{2}{35}\right)^{2}=\frac{24}{7}+\left(-\frac{2}{35}\right)^{2}
Divide -\frac{4}{35}, the coefficient of the x term, by 2 to get -\frac{2}{35}. Then add the square of -\frac{2}{35} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{35}x+\frac{4}{1225}=\frac{24}{7}+\frac{4}{1225}
Square -\frac{2}{35} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{35}x+\frac{4}{1225}=\frac{4204}{1225}
Add \frac{24}{7} to \frac{4}{1225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{35}\right)^{2}=\frac{4204}{1225}
Factor x^{2}-\frac{4}{35}x+\frac{4}{1225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{35}\right)^{2}}=\sqrt{\frac{4204}{1225}}
Take the square root of both sides of the equation.
x-\frac{2}{35}=\frac{2\sqrt{1051}}{35} x-\frac{2}{35}=-\frac{2\sqrt{1051}}{35}
Simplify.
x=\frac{2\sqrt{1051}+2}{35} x=\frac{2-2\sqrt{1051}}{35}
Add \frac{2}{35} to both sides of the equation.