Solve for n (complex solution)
n=2\left(x-2\right)
x\neq -2\text{ and }x\neq 2
Solve for n
n=2\left(x-2\right)
|x|\neq 2
Solve for x
x=\frac{n+4}{2}
n\neq -8\text{ and }n\neq 0
Graph
Share
Copied to clipboard
n\left(x-2\right)\times 3+\left(x^{2}-4\right)\times 2=n\left(4x-4\right)
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n\left(x-2\right)\left(x+2\right), the least common multiple of x+2,n,x^{2}-4.
\left(nx-2n\right)\times 3+\left(x^{2}-4\right)\times 2=n\left(4x-4\right)
Use the distributive property to multiply n by x-2.
3nx-6n+\left(x^{2}-4\right)\times 2=n\left(4x-4\right)
Use the distributive property to multiply nx-2n by 3.
3nx-6n+2x^{2}-8=n\left(4x-4\right)
Use the distributive property to multiply x^{2}-4 by 2.
3nx-6n+2x^{2}-8=4nx-4n
Use the distributive property to multiply n by 4x-4.
3nx-6n+2x^{2}-8-4nx=-4n
Subtract 4nx from both sides.
-nx-6n+2x^{2}-8=-4n
Combine 3nx and -4nx to get -nx.
-nx-6n+2x^{2}-8+4n=0
Add 4n to both sides.
-nx-2n+2x^{2}-8=0
Combine -6n and 4n to get -2n.
-nx-2n-8=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
-nx-2n=-2x^{2}+8
Add 8 to both sides.
\left(-x-2\right)n=-2x^{2}+8
Combine all terms containing n.
\left(-x-2\right)n=8-2x^{2}
The equation is in standard form.
\frac{\left(-x-2\right)n}{-x-2}=\frac{8-2x^{2}}{-x-2}
Divide both sides by -x-2.
n=\frac{8-2x^{2}}{-x-2}
Dividing by -x-2 undoes the multiplication by -x-2.
n=2x-4
Divide -2x^{2}+8 by -x-2.
n=2x-4\text{, }n\neq 0
Variable n cannot be equal to 0.
n\left(x-2\right)\times 3+\left(x^{2}-4\right)\times 2=n\left(4x-4\right)
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n\left(x-2\right)\left(x+2\right), the least common multiple of x+2,n,x^{2}-4.
\left(nx-2n\right)\times 3+\left(x^{2}-4\right)\times 2=n\left(4x-4\right)
Use the distributive property to multiply n by x-2.
3nx-6n+\left(x^{2}-4\right)\times 2=n\left(4x-4\right)
Use the distributive property to multiply nx-2n by 3.
3nx-6n+2x^{2}-8=n\left(4x-4\right)
Use the distributive property to multiply x^{2}-4 by 2.
3nx-6n+2x^{2}-8=4nx-4n
Use the distributive property to multiply n by 4x-4.
3nx-6n+2x^{2}-8-4nx=-4n
Subtract 4nx from both sides.
-nx-6n+2x^{2}-8=-4n
Combine 3nx and -4nx to get -nx.
-nx-6n+2x^{2}-8+4n=0
Add 4n to both sides.
-nx-2n+2x^{2}-8=0
Combine -6n and 4n to get -2n.
-nx-2n-8=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
-nx-2n=-2x^{2}+8
Add 8 to both sides.
\left(-x-2\right)n=-2x^{2}+8
Combine all terms containing n.
\left(-x-2\right)n=8-2x^{2}
The equation is in standard form.
\frac{\left(-x-2\right)n}{-x-2}=\frac{8-2x^{2}}{-x-2}
Divide both sides by -x-2.
n=\frac{8-2x^{2}}{-x-2}
Dividing by -x-2 undoes the multiplication by -x-2.
n=2x-4
Divide -2x^{2}+8 by -x-2.
n=2x-4\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}