Solve for x
x = \frac{\sqrt{193} + 13}{12} \approx 2.241036999
x=\frac{13-\sqrt{193}}{12}\approx -0.074370332
Graph
Share
Copied to clipboard
\left(x-2\right)\left(x-1\right)\times 3+\left(x-2\right)\left(x+1\right)\times 4=x^{2}-1
Variable x cannot be equal to any of the values -1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1,x-2.
\left(x^{2}-3x+2\right)\times 3+\left(x-2\right)\left(x+1\right)\times 4=x^{2}-1
Use the distributive property to multiply x-2 by x-1 and combine like terms.
3x^{2}-9x+6+\left(x-2\right)\left(x+1\right)\times 4=x^{2}-1
Use the distributive property to multiply x^{2}-3x+2 by 3.
3x^{2}-9x+6+\left(x^{2}-x-2\right)\times 4=x^{2}-1
Use the distributive property to multiply x-2 by x+1 and combine like terms.
3x^{2}-9x+6+4x^{2}-4x-8=x^{2}-1
Use the distributive property to multiply x^{2}-x-2 by 4.
7x^{2}-9x+6-4x-8=x^{2}-1
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}-13x+6-8=x^{2}-1
Combine -9x and -4x to get -13x.
7x^{2}-13x-2=x^{2}-1
Subtract 8 from 6 to get -2.
7x^{2}-13x-2-x^{2}=-1
Subtract x^{2} from both sides.
6x^{2}-13x-2=-1
Combine 7x^{2} and -x^{2} to get 6x^{2}.
6x^{2}-13x-2+1=0
Add 1 to both sides.
6x^{2}-13x-1=0
Add -2 and 1 to get -1.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\left(-1\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -13 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\left(-1\right)}}{2\times 6}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-24\left(-1\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-13\right)±\sqrt{169+24}}{2\times 6}
Multiply -24 times -1.
x=\frac{-\left(-13\right)±\sqrt{193}}{2\times 6}
Add 169 to 24.
x=\frac{13±\sqrt{193}}{2\times 6}
The opposite of -13 is 13.
x=\frac{13±\sqrt{193}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{193}+13}{12}
Now solve the equation x=\frac{13±\sqrt{193}}{12} when ± is plus. Add 13 to \sqrt{193}.
x=\frac{13-\sqrt{193}}{12}
Now solve the equation x=\frac{13±\sqrt{193}}{12} when ± is minus. Subtract \sqrt{193} from 13.
x=\frac{\sqrt{193}+13}{12} x=\frac{13-\sqrt{193}}{12}
The equation is now solved.
\left(x-2\right)\left(x-1\right)\times 3+\left(x-2\right)\left(x+1\right)\times 4=x^{2}-1
Variable x cannot be equal to any of the values -1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1,x-2.
\left(x^{2}-3x+2\right)\times 3+\left(x-2\right)\left(x+1\right)\times 4=x^{2}-1
Use the distributive property to multiply x-2 by x-1 and combine like terms.
3x^{2}-9x+6+\left(x-2\right)\left(x+1\right)\times 4=x^{2}-1
Use the distributive property to multiply x^{2}-3x+2 by 3.
3x^{2}-9x+6+\left(x^{2}-x-2\right)\times 4=x^{2}-1
Use the distributive property to multiply x-2 by x+1 and combine like terms.
3x^{2}-9x+6+4x^{2}-4x-8=x^{2}-1
Use the distributive property to multiply x^{2}-x-2 by 4.
7x^{2}-9x+6-4x-8=x^{2}-1
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}-13x+6-8=x^{2}-1
Combine -9x and -4x to get -13x.
7x^{2}-13x-2=x^{2}-1
Subtract 8 from 6 to get -2.
7x^{2}-13x-2-x^{2}=-1
Subtract x^{2} from both sides.
6x^{2}-13x-2=-1
Combine 7x^{2} and -x^{2} to get 6x^{2}.
6x^{2}-13x=-1+2
Add 2 to both sides.
6x^{2}-13x=1
Add -1 and 2 to get 1.
\frac{6x^{2}-13x}{6}=\frac{1}{6}
Divide both sides by 6.
x^{2}-\frac{13}{6}x=\frac{1}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=\frac{1}{6}+\left(-\frac{13}{12}\right)^{2}
Divide -\frac{13}{6}, the coefficient of the x term, by 2 to get -\frac{13}{12}. Then add the square of -\frac{13}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{1}{6}+\frac{169}{144}
Square -\frac{13}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{193}{144}
Add \frac{1}{6} to \frac{169}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{12}\right)^{2}=\frac{193}{144}
Factor x^{2}-\frac{13}{6}x+\frac{169}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{193}{144}}
Take the square root of both sides of the equation.
x-\frac{13}{12}=\frac{\sqrt{193}}{12} x-\frac{13}{12}=-\frac{\sqrt{193}}{12}
Simplify.
x=\frac{\sqrt{193}+13}{12} x=\frac{13-\sqrt{193}}{12}
Add \frac{13}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}