Evaluate
\frac{3}{86}\approx 0.034883721
Factor
\frac{3}{2 \cdot 43} = 0.03488372093023256
Share
Copied to clipboard
\frac{3}{8}-\frac{16}{8}+\frac{3}{16}\times 3+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Convert 2 to fraction \frac{16}{8}.
\frac{3-16}{8}+\frac{3}{16}\times 3+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Since \frac{3}{8} and \frac{16}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{8}+\frac{3}{16}\times 3+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Subtract 16 from 3 to get -13.
-\frac{13}{8}+\frac{3\times 3}{16}+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Express \frac{3}{16}\times 3 as a single fraction.
-\frac{13}{8}+\frac{9}{16}+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Multiply 3 and 3 to get 9.
-\frac{26}{16}+\frac{9}{16}+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Least common multiple of 8 and 16 is 16. Convert -\frac{13}{8} and \frac{9}{16} to fractions with denominator 16.
\frac{-26+9}{16}+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Since -\frac{26}{16} and \frac{9}{16} have the same denominator, add them by adding their numerators.
-\frac{17}{16}+\frac{3}{16}\times 3+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Add -26 and 9 to get -17.
-\frac{17}{16}+\frac{3\times 3}{16}+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Express \frac{3}{16}\times 3 as a single fraction.
-\frac{17}{16}+\frac{9}{16}+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Multiply 3 and 3 to get 9.
\frac{-17+9}{16}+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Since -\frac{17}{16} and \frac{9}{16} have the same denominator, add them by adding their numerators.
\frac{-8}{16}+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Add -17 and 9 to get -8.
-\frac{1}{2}+\frac{1}{8}\times 2+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Reduce the fraction \frac{-8}{16} to lowest terms by extracting and canceling out 8.
-\frac{1}{2}+\frac{2}{8}+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Multiply \frac{1}{8} and 2 to get \frac{2}{8}.
-\frac{1}{2}+\frac{1}{4}+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
-\frac{2}{4}+\frac{1}{4}+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Least common multiple of 2 and 4 is 4. Convert -\frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{-2+1}{4}+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Since -\frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
-\frac{1}{4}+\frac{1}{86}\times 3+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Add -2 and 1 to get -1.
-\frac{1}{4}+\frac{3}{86}+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Multiply \frac{1}{86} and 3 to get \frac{3}{86}.
-\frac{43}{172}+\frac{6}{172}+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Least common multiple of 4 and 86 is 172. Convert -\frac{1}{4} and \frac{3}{86} to fractions with denominator 172.
\frac{-43+6}{172}+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Since -\frac{43}{172} and \frac{6}{172} have the same denominator, add them by adding their numerators.
-\frac{37}{172}+\frac{1}{32}\times 4+\frac{1}{32}\times 4
Add -43 and 6 to get -37.
-\frac{37}{172}+\frac{4}{32}+\frac{1}{32}\times 4
Multiply \frac{1}{32} and 4 to get \frac{4}{32}.
-\frac{37}{172}+\frac{1}{8}+\frac{1}{32}\times 4
Reduce the fraction \frac{4}{32} to lowest terms by extracting and canceling out 4.
-\frac{74}{344}+\frac{43}{344}+\frac{1}{32}\times 4
Least common multiple of 172 and 8 is 344. Convert -\frac{37}{172} and \frac{1}{8} to fractions with denominator 344.
\frac{-74+43}{344}+\frac{1}{32}\times 4
Since -\frac{74}{344} and \frac{43}{344} have the same denominator, add them by adding their numerators.
-\frac{31}{344}+\frac{1}{32}\times 4
Add -74 and 43 to get -31.
-\frac{31}{344}+\frac{4}{32}
Multiply \frac{1}{32} and 4 to get \frac{4}{32}.
-\frac{31}{344}+\frac{1}{8}
Reduce the fraction \frac{4}{32} to lowest terms by extracting and canceling out 4.
-\frac{31}{344}+\frac{43}{344}
Least common multiple of 344 and 8 is 344. Convert -\frac{31}{344} and \frac{1}{8} to fractions with denominator 344.
\frac{-31+43}{344}
Since -\frac{31}{344} and \frac{43}{344} have the same denominator, add them by adding their numerators.
\frac{12}{344}
Add -31 and 43 to get 12.
\frac{3}{86}
Reduce the fraction \frac{12}{344} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}