Evaluate
-\frac{2913}{1729}\approx -1.684788895
Factor
-\frac{2913}{1729} = -1\frac{1184}{1729} = -1.684788895315211
Share
Copied to clipboard
\frac{3}{7}-\frac{78+5}{26}-\left(-\frac{1\times 114+9}{114}\right)
Multiply 3 and 26 to get 78.
\frac{3}{7}-\frac{83}{26}-\left(-\frac{1\times 114+9}{114}\right)
Add 78 and 5 to get 83.
\frac{78}{182}-\frac{581}{182}-\left(-\frac{1\times 114+9}{114}\right)
Least common multiple of 7 and 26 is 182. Convert \frac{3}{7} and \frac{83}{26} to fractions with denominator 182.
\frac{78-581}{182}-\left(-\frac{1\times 114+9}{114}\right)
Since \frac{78}{182} and \frac{581}{182} have the same denominator, subtract them by subtracting their numerators.
-\frac{503}{182}-\left(-\frac{1\times 114+9}{114}\right)
Subtract 581 from 78 to get -503.
-\frac{503}{182}-\left(-\frac{114+9}{114}\right)
Multiply 1 and 114 to get 114.
-\frac{503}{182}-\left(-\frac{123}{114}\right)
Add 114 and 9 to get 123.
-\frac{503}{182}-\left(-\frac{41}{38}\right)
Reduce the fraction \frac{123}{114} to lowest terms by extracting and canceling out 3.
-\frac{503}{182}+\frac{41}{38}
The opposite of -\frac{41}{38} is \frac{41}{38}.
-\frac{9557}{3458}+\frac{3731}{3458}
Least common multiple of 182 and 38 is 3458. Convert -\frac{503}{182} and \frac{41}{38} to fractions with denominator 3458.
\frac{-9557+3731}{3458}
Since -\frac{9557}{3458} and \frac{3731}{3458} have the same denominator, add them by adding their numerators.
\frac{-5826}{3458}
Add -9557 and 3731 to get -5826.
-\frac{2913}{1729}
Reduce the fraction \frac{-5826}{3458} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}