Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{2\left(3a-5\right)}-\frac{15}{\left(3a-5\right)\left(3a+5\right)}
Factor 6a-10. Factor 9a^{2}-25.
\frac{3\left(3a+5\right)}{2\left(3a-5\right)\left(3a+5\right)}-\frac{15\times 2}{2\left(3a-5\right)\left(3a+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(3a-5\right) and \left(3a-5\right)\left(3a+5\right) is 2\left(3a-5\right)\left(3a+5\right). Multiply \frac{3}{2\left(3a-5\right)} times \frac{3a+5}{3a+5}. Multiply \frac{15}{\left(3a-5\right)\left(3a+5\right)} times \frac{2}{2}.
\frac{3\left(3a+5\right)-15\times 2}{2\left(3a-5\right)\left(3a+5\right)}
Since \frac{3\left(3a+5\right)}{2\left(3a-5\right)\left(3a+5\right)} and \frac{15\times 2}{2\left(3a-5\right)\left(3a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9a+15-30}{2\left(3a-5\right)\left(3a+5\right)}
Do the multiplications in 3\left(3a+5\right)-15\times 2.
\frac{9a-15}{2\left(3a-5\right)\left(3a+5\right)}
Combine like terms in 9a+15-30.
\frac{3\left(3a-5\right)}{2\left(3a-5\right)\left(3a+5\right)}
Factor the expressions that are not already factored in \frac{9a-15}{2\left(3a-5\right)\left(3a+5\right)}.
\frac{3}{2\left(3a+5\right)}
Cancel out 3a-5 in both numerator and denominator.
\frac{3}{6a+10}
Expand 2\left(3a+5\right).