Solve for p
p = \frac{25}{11} = 2\frac{3}{11} \approx 2.272727273
Share
Copied to clipboard
\frac{3}{5}p+\frac{1}{2}p+\frac{1}{2}=3
Use the distributive property to multiply \frac{1}{2} by p+1.
\frac{11}{10}p+\frac{1}{2}=3
Combine \frac{3}{5}p and \frac{1}{2}p to get \frac{11}{10}p.
\frac{11}{10}p=3-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{11}{10}p=\frac{6}{2}-\frac{1}{2}
Convert 3 to fraction \frac{6}{2}.
\frac{11}{10}p=\frac{6-1}{2}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{10}p=\frac{5}{2}
Subtract 1 from 6 to get 5.
p=\frac{5}{2}\times \frac{10}{11}
Multiply both sides by \frac{10}{11}, the reciprocal of \frac{11}{10}.
p=\frac{5\times 10}{2\times 11}
Multiply \frac{5}{2} times \frac{10}{11} by multiplying numerator times numerator and denominator times denominator.
p=\frac{50}{22}
Do the multiplications in the fraction \frac{5\times 10}{2\times 11}.
p=\frac{25}{11}
Reduce the fraction \frac{50}{22} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}