Solve for v
v=-27
Share
Copied to clipboard
\frac{3}{5}v+\frac{3}{5}\times 2=\frac{1}{2}\left(v-3\right)
Use the distributive property to multiply \frac{3}{5} by v+2.
\frac{3}{5}v+\frac{3\times 2}{5}=\frac{1}{2}\left(v-3\right)
Express \frac{3}{5}\times 2 as a single fraction.
\frac{3}{5}v+\frac{6}{5}=\frac{1}{2}\left(v-3\right)
Multiply 3 and 2 to get 6.
\frac{3}{5}v+\frac{6}{5}=\frac{1}{2}v+\frac{1}{2}\left(-3\right)
Use the distributive property to multiply \frac{1}{2} by v-3.
\frac{3}{5}v+\frac{6}{5}=\frac{1}{2}v+\frac{-3}{2}
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
\frac{3}{5}v+\frac{6}{5}=\frac{1}{2}v-\frac{3}{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{5}v+\frac{6}{5}-\frac{1}{2}v=-\frac{3}{2}
Subtract \frac{1}{2}v from both sides.
\frac{1}{10}v+\frac{6}{5}=-\frac{3}{2}
Combine \frac{3}{5}v and -\frac{1}{2}v to get \frac{1}{10}v.
\frac{1}{10}v=-\frac{3}{2}-\frac{6}{5}
Subtract \frac{6}{5} from both sides.
\frac{1}{10}v=-\frac{15}{10}-\frac{12}{10}
Least common multiple of 2 and 5 is 10. Convert -\frac{3}{2} and \frac{6}{5} to fractions with denominator 10.
\frac{1}{10}v=\frac{-15-12}{10}
Since -\frac{15}{10} and \frac{12}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{10}v=-\frac{27}{10}
Subtract 12 from -15 to get -27.
v=-\frac{27}{10}\times 10
Multiply both sides by 10, the reciprocal of \frac{1}{10}.
v=-27
Cancel out 10 and 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}