Solve for n
n=9
Share
Copied to clipboard
\frac{3}{5}n+\frac{3}{5}\left(-4\right)-\frac{1}{3}\left(2n-9\right)=\frac{1}{4}\left(n-1\right)-2
Use the distributive property to multiply \frac{3}{5} by n-4.
\frac{3}{5}n+\frac{3\left(-4\right)}{5}-\frac{1}{3}\left(2n-9\right)=\frac{1}{4}\left(n-1\right)-2
Express \frac{3}{5}\left(-4\right) as a single fraction.
\frac{3}{5}n+\frac{-12}{5}-\frac{1}{3}\left(2n-9\right)=\frac{1}{4}\left(n-1\right)-2
Multiply 3 and -4 to get -12.
\frac{3}{5}n-\frac{12}{5}-\frac{1}{3}\left(2n-9\right)=\frac{1}{4}\left(n-1\right)-2
Fraction \frac{-12}{5} can be rewritten as -\frac{12}{5} by extracting the negative sign.
\frac{3}{5}n-\frac{12}{5}-\frac{1}{3}\times 2n-\frac{1}{3}\left(-9\right)=\frac{1}{4}\left(n-1\right)-2
Use the distributive property to multiply -\frac{1}{3} by 2n-9.
\frac{3}{5}n-\frac{12}{5}+\frac{-2}{3}n-\frac{1}{3}\left(-9\right)=\frac{1}{4}\left(n-1\right)-2
Express -\frac{1}{3}\times 2 as a single fraction.
\frac{3}{5}n-\frac{12}{5}-\frac{2}{3}n-\frac{1}{3}\left(-9\right)=\frac{1}{4}\left(n-1\right)-2
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{3}{5}n-\frac{12}{5}-\frac{2}{3}n+\frac{-\left(-9\right)}{3}=\frac{1}{4}\left(n-1\right)-2
Express -\frac{1}{3}\left(-9\right) as a single fraction.
\frac{3}{5}n-\frac{12}{5}-\frac{2}{3}n+\frac{9}{3}=\frac{1}{4}\left(n-1\right)-2
Multiply -1 and -9 to get 9.
\frac{3}{5}n-\frac{12}{5}-\frac{2}{3}n+3=\frac{1}{4}\left(n-1\right)-2
Divide 9 by 3 to get 3.
-\frac{1}{15}n-\frac{12}{5}+3=\frac{1}{4}\left(n-1\right)-2
Combine \frac{3}{5}n and -\frac{2}{3}n to get -\frac{1}{15}n.
-\frac{1}{15}n-\frac{12}{5}+\frac{15}{5}=\frac{1}{4}\left(n-1\right)-2
Convert 3 to fraction \frac{15}{5}.
-\frac{1}{15}n+\frac{-12+15}{5}=\frac{1}{4}\left(n-1\right)-2
Since -\frac{12}{5} and \frac{15}{5} have the same denominator, add them by adding their numerators.
-\frac{1}{15}n+\frac{3}{5}=\frac{1}{4}\left(n-1\right)-2
Add -12 and 15 to get 3.
-\frac{1}{15}n+\frac{3}{5}=\frac{1}{4}n+\frac{1}{4}\left(-1\right)-2
Use the distributive property to multiply \frac{1}{4} by n-1.
-\frac{1}{15}n+\frac{3}{5}=\frac{1}{4}n-\frac{1}{4}-2
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
-\frac{1}{15}n+\frac{3}{5}=\frac{1}{4}n-\frac{1}{4}-\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
-\frac{1}{15}n+\frac{3}{5}=\frac{1}{4}n+\frac{-1-8}{4}
Since -\frac{1}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{15}n+\frac{3}{5}=\frac{1}{4}n-\frac{9}{4}
Subtract 8 from -1 to get -9.
-\frac{1}{15}n+\frac{3}{5}-\frac{1}{4}n=-\frac{9}{4}
Subtract \frac{1}{4}n from both sides.
-\frac{19}{60}n+\frac{3}{5}=-\frac{9}{4}
Combine -\frac{1}{15}n and -\frac{1}{4}n to get -\frac{19}{60}n.
-\frac{19}{60}n=-\frac{9}{4}-\frac{3}{5}
Subtract \frac{3}{5} from both sides.
-\frac{19}{60}n=-\frac{45}{20}-\frac{12}{20}
Least common multiple of 4 and 5 is 20. Convert -\frac{9}{4} and \frac{3}{5} to fractions with denominator 20.
-\frac{19}{60}n=\frac{-45-12}{20}
Since -\frac{45}{20} and \frac{12}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{19}{60}n=-\frac{57}{20}
Subtract 12 from -45 to get -57.
n=-\frac{57}{20}\left(-\frac{60}{19}\right)
Multiply both sides by -\frac{60}{19}, the reciprocal of -\frac{19}{60}.
n=\frac{-57\left(-60\right)}{20\times 19}
Multiply -\frac{57}{20} times -\frac{60}{19} by multiplying numerator times numerator and denominator times denominator.
n=\frac{3420}{380}
Do the multiplications in the fraction \frac{-57\left(-60\right)}{20\times 19}.
n=9
Divide 3420 by 380 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}