Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18\left(\frac{5}{3}x-\frac{1}{2}\right)-3=6\left(5x-2\right)
Multiply both sides of the equation by 30, the least common multiple of 5,3,2,10.
18\times \frac{5}{3}x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Use the distributive property to multiply 18 by \frac{5}{3}x-\frac{1}{2}.
\frac{18\times 5}{3}x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Express 18\times \frac{5}{3} as a single fraction.
\frac{90}{3}x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Multiply 18 and 5 to get 90.
30x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Divide 90 by 3 to get 30.
30x+\frac{18\left(-1\right)}{2}-3=6\left(5x-2\right)
Express 18\left(-\frac{1}{2}\right) as a single fraction.
30x+\frac{-18}{2}-3=6\left(5x-2\right)
Multiply 18 and -1 to get -18.
30x-9-3=6\left(5x-2\right)
Divide -18 by 2 to get -9.
30x-12=6\left(5x-2\right)
Subtract 3 from -9 to get -12.
30x-12=30x-12
Use the distributive property to multiply 6 by 5x-2.
30x-12-30x=-12
Subtract 30x from both sides.
-12=-12
Combine 30x and -30x to get 0.
\text{true}
Compare -12 and -12.
x\in \mathrm{C}
This is true for any x.
18\left(\frac{5}{3}x-\frac{1}{2}\right)-3=6\left(5x-2\right)
Multiply both sides of the equation by 30, the least common multiple of 5,3,2,10.
18\times \frac{5}{3}x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Use the distributive property to multiply 18 by \frac{5}{3}x-\frac{1}{2}.
\frac{18\times 5}{3}x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Express 18\times \frac{5}{3} as a single fraction.
\frac{90}{3}x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Multiply 18 and 5 to get 90.
30x+18\left(-\frac{1}{2}\right)-3=6\left(5x-2\right)
Divide 90 by 3 to get 30.
30x+\frac{18\left(-1\right)}{2}-3=6\left(5x-2\right)
Express 18\left(-\frac{1}{2}\right) as a single fraction.
30x+\frac{-18}{2}-3=6\left(5x-2\right)
Multiply 18 and -1 to get -18.
30x-9-3=6\left(5x-2\right)
Divide -18 by 2 to get -9.
30x-12=6\left(5x-2\right)
Subtract 3 from -9 to get -12.
30x-12=30x-12
Use the distributive property to multiply 6 by 5x-2.
30x-12-30x=-12
Subtract 30x from both sides.
-12=-12
Combine 30x and -30x to get 0.
\text{true}
Compare -12 and -12.
x\in \mathrm{R}
This is true for any x.