Evaluate
\frac{243}{1250}=0.1944
Factor
\frac{3 ^ {5}}{2 \cdot 5 ^ {4}} = 0.1944
Share
Copied to clipboard
\frac{3\times 3}{5\times 5}\times 2\times \frac{3}{10}\times \frac{7}{10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Multiply \frac{3}{5} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{25}\times 2\times \frac{3}{10}\times \frac{7}{10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Do the multiplications in the fraction \frac{3\times 3}{5\times 5}.
\frac{9\times 2}{25}\times \frac{3}{10}\times \frac{7}{10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Express \frac{9}{25}\times 2 as a single fraction.
\frac{18}{25}\times \frac{3}{10}\times \frac{7}{10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Multiply 9 and 2 to get 18.
\frac{18\times 3}{25\times 10}\times \frac{7}{10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Multiply \frac{18}{25} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{54}{250}\times \frac{7}{10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Do the multiplications in the fraction \frac{18\times 3}{25\times 10}.
\frac{27}{125}\times \frac{7}{10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Reduce the fraction \frac{54}{250} to lowest terms by extracting and canceling out 2.
\frac{27\times 7}{125\times 10}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Multiply \frac{27}{125} times \frac{7}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{189}{1250}+\frac{3}{10}\times \frac{3}{10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Do the multiplications in the fraction \frac{27\times 7}{125\times 10}.
\frac{189}{1250}+\frac{3\times 3}{10\times 10}\times 2\times \frac{3}{5}\times \frac{2}{5}
Multiply \frac{3}{10} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{189}{1250}+\frac{9}{100}\times 2\times \frac{3}{5}\times \frac{2}{5}
Do the multiplications in the fraction \frac{3\times 3}{10\times 10}.
\frac{189}{1250}+\frac{9\times 2}{100}\times \frac{3}{5}\times \frac{2}{5}
Express \frac{9}{100}\times 2 as a single fraction.
\frac{189}{1250}+\frac{18}{100}\times \frac{3}{5}\times \frac{2}{5}
Multiply 9 and 2 to get 18.
\frac{189}{1250}+\frac{9}{50}\times \frac{3}{5}\times \frac{2}{5}
Reduce the fraction \frac{18}{100} to lowest terms by extracting and canceling out 2.
\frac{189}{1250}+\frac{9\times 3}{50\times 5}\times \frac{2}{5}
Multiply \frac{9}{50} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{189}{1250}+\frac{27}{250}\times \frac{2}{5}
Do the multiplications in the fraction \frac{9\times 3}{50\times 5}.
\frac{189}{1250}+\frac{27\times 2}{250\times 5}
Multiply \frac{27}{250} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{189}{1250}+\frac{54}{1250}
Do the multiplications in the fraction \frac{27\times 2}{250\times 5}.
\frac{189+54}{1250}
Since \frac{189}{1250} and \frac{54}{1250} have the same denominator, add them by adding their numerators.
\frac{243}{1250}
Add 189 and 54 to get 243.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}