Evaluate
\frac{49}{40}=1.225
Factor
\frac{7 ^ {2}}{2 ^ {3} \cdot 5} = 1\frac{9}{40} = 1.225
Share
Copied to clipboard
\frac{3}{5}-3\left(-\frac{1}{3}+\frac{3}{3}-\left(\frac{1}{4}-\frac{1}{8}\right)-\frac{3}{4}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3}{5}-3\left(\frac{-1+3}{3}-\left(\frac{1}{4}-\frac{1}{8}\right)-\frac{3}{4}\right)
Since -\frac{1}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{3}{5}-3\left(\frac{2}{3}-\left(\frac{1}{4}-\frac{1}{8}\right)-\frac{3}{4}\right)
Add -1 and 3 to get 2.
\frac{3}{5}-3\left(\frac{2}{3}-\left(\frac{2}{8}-\frac{1}{8}\right)-\frac{3}{4}\right)
Least common multiple of 4 and 8 is 8. Convert \frac{1}{4} and \frac{1}{8} to fractions with denominator 8.
\frac{3}{5}-3\left(\frac{2}{3}-\frac{2-1}{8}-\frac{3}{4}\right)
Since \frac{2}{8} and \frac{1}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{5}-3\left(\frac{2}{3}-\frac{1}{8}-\frac{3}{4}\right)
Subtract 1 from 2 to get 1.
\frac{3}{5}-3\left(\frac{16}{24}-\frac{3}{24}-\frac{3}{4}\right)
Least common multiple of 3 and 8 is 24. Convert \frac{2}{3} and \frac{1}{8} to fractions with denominator 24.
\frac{3}{5}-3\left(\frac{16-3}{24}-\frac{3}{4}\right)
Since \frac{16}{24} and \frac{3}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{5}-3\left(\frac{13}{24}-\frac{3}{4}\right)
Subtract 3 from 16 to get 13.
\frac{3}{5}-3\left(\frac{13}{24}-\frac{18}{24}\right)
Least common multiple of 24 and 4 is 24. Convert \frac{13}{24} and \frac{3}{4} to fractions with denominator 24.
\frac{3}{5}-3\times \frac{13-18}{24}
Since \frac{13}{24} and \frac{18}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{5}-3\left(-\frac{5}{24}\right)
Subtract 18 from 13 to get -5.
\frac{3}{5}+\frac{-3\left(-5\right)}{24}
Express -3\left(-\frac{5}{24}\right) as a single fraction.
\frac{3}{5}+\frac{15}{24}
Multiply -3 and -5 to get 15.
\frac{3}{5}+\frac{5}{8}
Reduce the fraction \frac{15}{24} to lowest terms by extracting and canceling out 3.
\frac{24}{40}+\frac{25}{40}
Least common multiple of 5 and 8 is 40. Convert \frac{3}{5} and \frac{5}{8} to fractions with denominator 40.
\frac{24+25}{40}
Since \frac{24}{40} and \frac{25}{40} have the same denominator, add them by adding their numerators.
\frac{49}{40}
Add 24 and 25 to get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}