Solve for x
x = \frac{3 \sqrt{17} + 5}{8} \approx 2.17116461
x=\frac{5-3\sqrt{17}}{8}\approx -0.92116461
Graph
Share
Copied to clipboard
\frac{3}{4}x-2x-2=-x^{2}
Use the distributive property to multiply -2 by x+1.
-\frac{5}{4}x-2=-x^{2}
Combine \frac{3}{4}x and -2x to get -\frac{5}{4}x.
-\frac{5}{4}x-2+x^{2}=0
Add x^{2} to both sides.
x^{2}-\frac{5}{4}x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{5}{4}\right)±\sqrt{\left(-\frac{5}{4}\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{5}{4} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{4}\right)±\sqrt{\frac{25}{16}-4\left(-2\right)}}{2}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{4}\right)±\sqrt{\frac{25}{16}+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-\frac{5}{4}\right)±\sqrt{\frac{153}{16}}}{2}
Add \frac{25}{16} to 8.
x=\frac{-\left(-\frac{5}{4}\right)±\frac{3\sqrt{17}}{4}}{2}
Take the square root of \frac{153}{16}.
x=\frac{\frac{5}{4}±\frac{3\sqrt{17}}{4}}{2}
The opposite of -\frac{5}{4} is \frac{5}{4}.
x=\frac{3\sqrt{17}+5}{2\times 4}
Now solve the equation x=\frac{\frac{5}{4}±\frac{3\sqrt{17}}{4}}{2} when ± is plus. Add \frac{5}{4} to \frac{3\sqrt{17}}{4}.
x=\frac{3\sqrt{17}+5}{8}
Divide \frac{5+3\sqrt{17}}{4} by 2.
x=\frac{5-3\sqrt{17}}{2\times 4}
Now solve the equation x=\frac{\frac{5}{4}±\frac{3\sqrt{17}}{4}}{2} when ± is minus. Subtract \frac{3\sqrt{17}}{4} from \frac{5}{4}.
x=\frac{5-3\sqrt{17}}{8}
Divide \frac{5-3\sqrt{17}}{4} by 2.
x=\frac{3\sqrt{17}+5}{8} x=\frac{5-3\sqrt{17}}{8}
The equation is now solved.
\frac{3}{4}x-2x-2=-x^{2}
Use the distributive property to multiply -2 by x+1.
-\frac{5}{4}x-2=-x^{2}
Combine \frac{3}{4}x and -2x to get -\frac{5}{4}x.
-\frac{5}{4}x-2+x^{2}=0
Add x^{2} to both sides.
-\frac{5}{4}x+x^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
x^{2}-\frac{5}{4}x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=2+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{4}x+\frac{25}{64}=2+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{153}{64}
Add 2 to \frac{25}{64}.
\left(x-\frac{5}{8}\right)^{2}=\frac{153}{64}
Factor x^{2}-\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{\frac{153}{64}}
Take the square root of both sides of the equation.
x-\frac{5}{8}=\frac{3\sqrt{17}}{8} x-\frac{5}{8}=-\frac{3\sqrt{17}}{8}
Simplify.
x=\frac{3\sqrt{17}+5}{8} x=\frac{5-3\sqrt{17}}{8}
Add \frac{5}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}