Solve for m
m=\sqrt{3}\approx 1.732050808
m=-\sqrt{3}\approx -1.732050808
Share
Copied to clipboard
3m^{2}=2\left(\frac{3}{2}m+3\right)\left(2-m\right)+6
Multiply both sides of the equation by 4, the least common multiple of 4,2.
3m^{2}=\left(3m+6\right)\left(2-m\right)+6
Use the distributive property to multiply 2 by \frac{3}{2}m+3.
3m^{2}=-3m^{2}+12+6
Use the distributive property to multiply 3m+6 by 2-m and combine like terms.
3m^{2}=-3m^{2}+18
Add 12 and 6 to get 18.
3m^{2}+3m^{2}=18
Add 3m^{2} to both sides.
6m^{2}=18
Combine 3m^{2} and 3m^{2} to get 6m^{2}.
m^{2}=\frac{18}{6}
Divide both sides by 6.
m^{2}=3
Divide 18 by 6 to get 3.
m=\sqrt{3} m=-\sqrt{3}
Take the square root of both sides of the equation.
3m^{2}=2\left(\frac{3}{2}m+3\right)\left(2-m\right)+6
Multiply both sides of the equation by 4, the least common multiple of 4,2.
3m^{2}=\left(3m+6\right)\left(2-m\right)+6
Use the distributive property to multiply 2 by \frac{3}{2}m+3.
3m^{2}=-3m^{2}+12+6
Use the distributive property to multiply 3m+6 by 2-m and combine like terms.
3m^{2}=-3m^{2}+18
Add 12 and 6 to get 18.
3m^{2}+3m^{2}=18
Add 3m^{2} to both sides.
6m^{2}=18
Combine 3m^{2} and 3m^{2} to get 6m^{2}.
6m^{2}-18=0
Subtract 18 from both sides.
m=\frac{0±\sqrt{0^{2}-4\times 6\left(-18\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 6\left(-18\right)}}{2\times 6}
Square 0.
m=\frac{0±\sqrt{-24\left(-18\right)}}{2\times 6}
Multiply -4 times 6.
m=\frac{0±\sqrt{432}}{2\times 6}
Multiply -24 times -18.
m=\frac{0±12\sqrt{3}}{2\times 6}
Take the square root of 432.
m=\frac{0±12\sqrt{3}}{12}
Multiply 2 times 6.
m=\sqrt{3}
Now solve the equation m=\frac{0±12\sqrt{3}}{12} when ± is plus.
m=-\sqrt{3}
Now solve the equation m=\frac{0±12\sqrt{3}}{12} when ± is minus.
m=\sqrt{3} m=-\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}