Solve for d
d = -\frac{40}{3} = -13\frac{1}{3} \approx -13.333333333
Share
Copied to clipboard
\frac{3}{4}d=-17+7
Add 7 to both sides.
\frac{3}{4}d=-10
Add -17 and 7 to get -10.
d=-10\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
d=\frac{-10\times 4}{3}
Express -10\times \frac{4}{3} as a single fraction.
d=\frac{-40}{3}
Multiply -10 and 4 to get -40.
d=-\frac{40}{3}
Fraction \frac{-40}{3} can be rewritten as -\frac{40}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}