Solve for a
a=2
a = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
Quiz
Quadratic Equation
5 problems similar to:
\frac { 3 } { 4 } a ^ { 2 } - 3 a + 4 - 5 = 2 ( a - 4 )
Share
Copied to clipboard
\frac{3}{4}a^{2}-3a-1=2\left(a-4\right)
Subtract 5 from 4 to get -1.
\frac{3}{4}a^{2}-3a-1=2a-8
Use the distributive property to multiply 2 by a-4.
\frac{3}{4}a^{2}-3a-1-2a=-8
Subtract 2a from both sides.
\frac{3}{4}a^{2}-5a-1=-8
Combine -3a and -2a to get -5a.
\frac{3}{4}a^{2}-5a-1+8=0
Add 8 to both sides.
\frac{3}{4}a^{2}-5a+7=0
Add -1 and 8 to get 7.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times \frac{3}{4}\times 7}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4} for a, -5 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\times \frac{3}{4}\times 7}}{2\times \frac{3}{4}}
Square -5.
a=\frac{-\left(-5\right)±\sqrt{25-3\times 7}}{2\times \frac{3}{4}}
Multiply -4 times \frac{3}{4}.
a=\frac{-\left(-5\right)±\sqrt{25-21}}{2\times \frac{3}{4}}
Multiply -3 times 7.
a=\frac{-\left(-5\right)±\sqrt{4}}{2\times \frac{3}{4}}
Add 25 to -21.
a=\frac{-\left(-5\right)±2}{2\times \frac{3}{4}}
Take the square root of 4.
a=\frac{5±2}{2\times \frac{3}{4}}
The opposite of -5 is 5.
a=\frac{5±2}{\frac{3}{2}}
Multiply 2 times \frac{3}{4}.
a=\frac{7}{\frac{3}{2}}
Now solve the equation a=\frac{5±2}{\frac{3}{2}} when ± is plus. Add 5 to 2.
a=\frac{14}{3}
Divide 7 by \frac{3}{2} by multiplying 7 by the reciprocal of \frac{3}{2}.
a=\frac{3}{\frac{3}{2}}
Now solve the equation a=\frac{5±2}{\frac{3}{2}} when ± is minus. Subtract 2 from 5.
a=2
Divide 3 by \frac{3}{2} by multiplying 3 by the reciprocal of \frac{3}{2}.
a=\frac{14}{3} a=2
The equation is now solved.
\frac{3}{4}a^{2}-3a-1=2\left(a-4\right)
Subtract 5 from 4 to get -1.
\frac{3}{4}a^{2}-3a-1=2a-8
Use the distributive property to multiply 2 by a-4.
\frac{3}{4}a^{2}-3a-1-2a=-8
Subtract 2a from both sides.
\frac{3}{4}a^{2}-5a-1=-8
Combine -3a and -2a to get -5a.
\frac{3}{4}a^{2}-5a=-8+1
Add 1 to both sides.
\frac{3}{4}a^{2}-5a=-7
Add -8 and 1 to get -7.
\frac{\frac{3}{4}a^{2}-5a}{\frac{3}{4}}=-\frac{7}{\frac{3}{4}}
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\left(-\frac{5}{\frac{3}{4}}\right)a=-\frac{7}{\frac{3}{4}}
Dividing by \frac{3}{4} undoes the multiplication by \frac{3}{4}.
a^{2}-\frac{20}{3}a=-\frac{7}{\frac{3}{4}}
Divide -5 by \frac{3}{4} by multiplying -5 by the reciprocal of \frac{3}{4}.
a^{2}-\frac{20}{3}a=-\frac{28}{3}
Divide -7 by \frac{3}{4} by multiplying -7 by the reciprocal of \frac{3}{4}.
a^{2}-\frac{20}{3}a+\left(-\frac{10}{3}\right)^{2}=-\frac{28}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{20}{3}a+\frac{100}{9}=-\frac{28}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{20}{3}a+\frac{100}{9}=\frac{16}{9}
Add -\frac{28}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{10}{3}\right)^{2}=\frac{16}{9}
Factor a^{2}-\frac{20}{3}a+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{10}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
a-\frac{10}{3}=\frac{4}{3} a-\frac{10}{3}=-\frac{4}{3}
Simplify.
a=\frac{14}{3} a=2
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}