Solve for x
x=250
Graph
Share
Copied to clipboard
\frac{3}{4}x+\frac{3}{4}\left(-10\right)=\frac{4}{5}x-20
Use the distributive property to multiply \frac{3}{4} by x-10.
\frac{3}{4}x+\frac{3\left(-10\right)}{4}=\frac{4}{5}x-20
Express \frac{3}{4}\left(-10\right) as a single fraction.
\frac{3}{4}x+\frac{-30}{4}=\frac{4}{5}x-20
Multiply 3 and -10 to get -30.
\frac{3}{4}x-\frac{15}{2}=\frac{4}{5}x-20
Reduce the fraction \frac{-30}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x-\frac{15}{2}-\frac{4}{5}x=-20
Subtract \frac{4}{5}x from both sides.
-\frac{1}{20}x-\frac{15}{2}=-20
Combine \frac{3}{4}x and -\frac{4}{5}x to get -\frac{1}{20}x.
-\frac{1}{20}x=-20+\frac{15}{2}
Add \frac{15}{2} to both sides.
-\frac{1}{20}x=-\frac{40}{2}+\frac{15}{2}
Convert -20 to fraction -\frac{40}{2}.
-\frac{1}{20}x=\frac{-40+15}{2}
Since -\frac{40}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
-\frac{1}{20}x=-\frac{25}{2}
Add -40 and 15 to get -25.
x=-\frac{25}{2}\left(-20\right)
Multiply both sides by -20, the reciprocal of -\frac{1}{20}.
x=\frac{-25\left(-20\right)}{2}
Express -\frac{25}{2}\left(-20\right) as a single fraction.
x=\frac{500}{2}
Multiply -25 and -20 to get 500.
x=250
Divide 500 by 2 to get 250.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}