Evaluate
\frac{59}{72}\approx 0.819444444
Factor
\frac{59}{2 ^ {3} \cdot 3 ^ {2}} = 0.8194444444444444
Share
Copied to clipboard
\frac{3\times 5}{4\times 6}+\frac{\frac{7}{8}}{\frac{9}{2}}
Multiply \frac{3}{4} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{24}+\frac{\frac{7}{8}}{\frac{9}{2}}
Do the multiplications in the fraction \frac{3\times 5}{4\times 6}.
\frac{5}{8}+\frac{\frac{7}{8}}{\frac{9}{2}}
Reduce the fraction \frac{15}{24} to lowest terms by extracting and canceling out 3.
\frac{5}{8}+\frac{7}{8}\times \frac{2}{9}
Divide \frac{7}{8} by \frac{9}{2} by multiplying \frac{7}{8} by the reciprocal of \frac{9}{2}.
\frac{5}{8}+\frac{7\times 2}{8\times 9}
Multiply \frac{7}{8} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{8}+\frac{14}{72}
Do the multiplications in the fraction \frac{7\times 2}{8\times 9}.
\frac{5}{8}+\frac{7}{36}
Reduce the fraction \frac{14}{72} to lowest terms by extracting and canceling out 2.
\frac{45}{72}+\frac{14}{72}
Least common multiple of 8 and 36 is 72. Convert \frac{5}{8} and \frac{7}{36} to fractions with denominator 72.
\frac{45+14}{72}
Since \frac{45}{72} and \frac{14}{72} have the same denominator, add them by adding their numerators.
\frac{59}{72}
Add 45 and 14 to get 59.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}