Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. Γ_15
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3}{4}\Gamma _{15}\times 3}{11}
Divide \frac{3}{4}\Gamma _{15} by \frac{11}{3} by multiplying \frac{3}{4}\Gamma _{15} by the reciprocal of \frac{11}{3}.
\frac{\frac{3\times 3}{4}\Gamma _{15}}{11}
Express \frac{3}{4}\times 3 as a single fraction.
\frac{\frac{9}{4}\Gamma _{15}}{11}
Multiply 3 and 3 to get 9.
\frac{9}{44}\Gamma _{15}
Divide \frac{9}{4}\Gamma _{15} by 11 to get \frac{9}{44}\Gamma _{15}.
\frac{\mathrm{d}}{\mathrm{d}\Gamma _{15}}(\frac{\frac{3}{4}\Gamma _{15}\times 3}{11})
Divide \frac{3}{4}\Gamma _{15} by \frac{11}{3} by multiplying \frac{3}{4}\Gamma _{15} by the reciprocal of \frac{11}{3}.
\frac{\mathrm{d}}{\mathrm{d}\Gamma _{15}}(\frac{\frac{3\times 3}{4}\Gamma _{15}}{11})
Express \frac{3}{4}\times 3 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}\Gamma _{15}}(\frac{\frac{9}{4}\Gamma _{15}}{11})
Multiply 3 and 3 to get 9.
\frac{\mathrm{d}}{\mathrm{d}\Gamma _{15}}(\frac{9}{44}\Gamma _{15})
Divide \frac{9}{4}\Gamma _{15} by 11 to get \frac{9}{44}\Gamma _{15}.
\frac{9}{44}\Gamma _{15}^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{9}{44}\Gamma _{15}^{0}
Subtract 1 from 1.
\frac{9}{44}\times 1
For any term t except 0, t^{0}=1.
\frac{9}{44}
For any term t, t\times 1=t and 1t=t.