Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{4}+y^{2}-1=0
Subtract 1 from both sides.
-\frac{1}{4}+y^{2}=0
Subtract 1 from \frac{3}{4} to get -\frac{1}{4}.
-1+4y^{2}=0
Multiply both sides by 4.
\left(2y-1\right)\left(2y+1\right)=0
Consider -1+4y^{2}. Rewrite -1+4y^{2} as \left(2y\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=\frac{1}{2} y=-\frac{1}{2}
To find equation solutions, solve 2y-1=0 and 2y+1=0.
y^{2}=1-\frac{3}{4}
Subtract \frac{3}{4} from both sides.
y^{2}=\frac{1}{4}
Subtract \frac{3}{4} from 1 to get \frac{1}{4}.
y=\frac{1}{2} y=-\frac{1}{2}
Take the square root of both sides of the equation.
\frac{3}{4}+y^{2}-1=0
Subtract 1 from both sides.
-\frac{1}{4}+y^{2}=0
Subtract 1 from \frac{3}{4} to get -\frac{1}{4}.
y^{2}-\frac{1}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-\frac{1}{4}\right)}}{2}
Square 0.
y=\frac{0±\sqrt{1}}{2}
Multiply -4 times -\frac{1}{4}.
y=\frac{0±1}{2}
Take the square root of 1.
y=\frac{1}{2}
Now solve the equation y=\frac{0±1}{2} when ± is plus. Divide 1 by 2.
y=-\frac{1}{2}
Now solve the equation y=\frac{0±1}{2} when ± is minus. Divide -1 by 2.
y=\frac{1}{2} y=-\frac{1}{2}
The equation is now solved.