Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{\left(4\sqrt{3}+3\sqrt{5}\right)\left(4\sqrt{3}-3\sqrt{5}\right)}
Rationalize the denominator of \frac{3}{4\sqrt{3}+3\sqrt{5}} by multiplying numerator and denominator by 4\sqrt{3}-3\sqrt{5}.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{\left(4\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(4\sqrt{3}+3\sqrt{5}\right)\left(4\sqrt{3}-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{16\left(\sqrt{3}\right)^{2}-\left(3\sqrt{5}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{16\times 3-\left(3\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{48-\left(3\sqrt{5}\right)^{2}}
Multiply 16 and 3 to get 48.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{48-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{48-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{48-9\times 5}
The square of \sqrt{5} is 5.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{48-45}
Multiply 9 and 5 to get 45.
\frac{3\left(4\sqrt{3}-3\sqrt{5}\right)}{3}
Subtract 45 from 48 to get 3.
4\sqrt{3}-3\sqrt{5}
Cancel out 3 and 3.