Solve for x
x>\frac{21}{5}
Graph
Share
Copied to clipboard
1\left(6-x\right)<\frac{1}{4}\left(x+3\right)
Divide 3 by 3 to get 1.
6-x<\frac{1}{4}\left(x+3\right)
Use the distributive property to multiply 1 by 6-x.
6-x<\frac{1}{4}x+\frac{1}{4}\times 3
Use the distributive property to multiply \frac{1}{4} by x+3.
6-x<\frac{1}{4}x+\frac{3}{4}
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
6-x-\frac{1}{4}x<\frac{3}{4}
Subtract \frac{1}{4}x from both sides.
6-\frac{5}{4}x<\frac{3}{4}
Combine -x and -\frac{1}{4}x to get -\frac{5}{4}x.
-\frac{5}{4}x<\frac{3}{4}-6
Subtract 6 from both sides.
-\frac{5}{4}x<\frac{3}{4}-\frac{24}{4}
Convert 6 to fraction \frac{24}{4}.
-\frac{5}{4}x<\frac{3-24}{4}
Since \frac{3}{4} and \frac{24}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{4}x<-\frac{21}{4}
Subtract 24 from 3 to get -21.
x>-\frac{21}{4}\left(-\frac{4}{5}\right)
Multiply both sides by -\frac{4}{5}, the reciprocal of -\frac{5}{4}. Since -\frac{5}{4} is negative, the inequality direction is changed.
x>\frac{-21\left(-4\right)}{4\times 5}
Multiply -\frac{21}{4} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
x>\frac{84}{20}
Do the multiplications in the fraction \frac{-21\left(-4\right)}{4\times 5}.
x>\frac{21}{5}
Reduce the fraction \frac{84}{20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}