Evaluate
\frac{2}{2u-v}
Expand
-\frac{2}{v-2u}
Quiz
Algebra
5 problems similar to:
\frac { 3 } { 2 u - v } - \frac { 2 u - v } { ( v - 2 u ) ^ { 2 } }
Share
Copied to clipboard
\frac{3\left(2u-v\right)}{\left(2u-v\right)^{2}}-\frac{2u-v}{\left(2u-v\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2u-v and \left(v-2u\right)^{2} is \left(2u-v\right)^{2}. Multiply \frac{3}{2u-v} times \frac{2u-v}{2u-v}.
\frac{3\left(2u-v\right)-\left(2u-v\right)}{\left(2u-v\right)^{2}}
Since \frac{3\left(2u-v\right)}{\left(2u-v\right)^{2}} and \frac{2u-v}{\left(2u-v\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{6u-3v-2u+v}{\left(2u-v\right)^{2}}
Do the multiplications in 3\left(2u-v\right)-\left(2u-v\right).
\frac{4u-2v}{\left(2u-v\right)^{2}}
Combine like terms in 6u-3v-2u+v.
\frac{2\left(2u-v\right)}{\left(2u-v\right)^{2}}
Factor the expressions that are not already factored in \frac{4u-2v}{\left(2u-v\right)^{2}}.
\frac{2}{2u-v}
Cancel out 2u-v in both numerator and denominator.
\frac{3\left(2u-v\right)}{\left(2u-v\right)^{2}}-\frac{2u-v}{\left(2u-v\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2u-v and \left(v-2u\right)^{2} is \left(2u-v\right)^{2}. Multiply \frac{3}{2u-v} times \frac{2u-v}{2u-v}.
\frac{3\left(2u-v\right)-\left(2u-v\right)}{\left(2u-v\right)^{2}}
Since \frac{3\left(2u-v\right)}{\left(2u-v\right)^{2}} and \frac{2u-v}{\left(2u-v\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{6u-3v-2u+v}{\left(2u-v\right)^{2}}
Do the multiplications in 3\left(2u-v\right)-\left(2u-v\right).
\frac{4u-2v}{\left(2u-v\right)^{2}}
Combine like terms in 6u-3v-2u+v.
\frac{2\left(2u-v\right)}{\left(2u-v\right)^{2}}
Factor the expressions that are not already factored in \frac{4u-2v}{\left(2u-v\right)^{2}}.
\frac{2}{2u-v}
Cancel out 2u-v in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}