Solve for b
b=\frac{3}{5}=0.6
Share
Copied to clipboard
\left(b-3\right)\times 3+2b\times 2b=4b\left(b-3\right)
Variable b cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by 2b\left(b-3\right), the least common multiple of 2b,b-3.
\left(b-3\right)\times 3+\left(2b\right)^{2}=4b\left(b-3\right)
Multiply 2b and 2b to get \left(2b\right)^{2}.
3b-9+\left(2b\right)^{2}=4b\left(b-3\right)
Use the distributive property to multiply b-3 by 3.
3b-9+2^{2}b^{2}=4b\left(b-3\right)
Expand \left(2b\right)^{2}.
3b-9+4b^{2}=4b\left(b-3\right)
Calculate 2 to the power of 2 and get 4.
3b-9+4b^{2}=4b^{2}-12b
Use the distributive property to multiply 4b by b-3.
3b-9+4b^{2}-4b^{2}=-12b
Subtract 4b^{2} from both sides.
3b-9=-12b
Combine 4b^{2} and -4b^{2} to get 0.
3b-9+12b=0
Add 12b to both sides.
15b-9=0
Combine 3b and 12b to get 15b.
15b=9
Add 9 to both sides. Anything plus zero gives itself.
b=\frac{9}{15}
Divide both sides by 15.
b=\frac{3}{5}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}