Solve for y
y\leq \frac{1}{39}
Graph
Share
Copied to clipboard
\frac{3}{2}y-1-8y\geq -\frac{7}{6}
Subtract 8y from both sides.
-\frac{13}{2}y-1\geq -\frac{7}{6}
Combine \frac{3}{2}y and -8y to get -\frac{13}{2}y.
-\frac{13}{2}y\geq -\frac{7}{6}+1
Add 1 to both sides.
-\frac{13}{2}y\geq -\frac{7}{6}+\frac{6}{6}
Convert 1 to fraction \frac{6}{6}.
-\frac{13}{2}y\geq \frac{-7+6}{6}
Since -\frac{7}{6} and \frac{6}{6} have the same denominator, add them by adding their numerators.
-\frac{13}{2}y\geq -\frac{1}{6}
Add -7 and 6 to get -1.
y\leq -\frac{1}{6}\left(-\frac{2}{13}\right)
Multiply both sides by -\frac{2}{13}, the reciprocal of -\frac{13}{2}. Since -\frac{13}{2} is negative, the inequality direction is changed.
y\leq \frac{-\left(-2\right)}{6\times 13}
Multiply -\frac{1}{6} times -\frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
y\leq \frac{2}{78}
Do the multiplications in the fraction \frac{-\left(-2\right)}{6\times 13}.
y\leq \frac{1}{39}
Reduce the fraction \frac{2}{78} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}