Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{2}a+\frac{3}{2}a\times 3a\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Use the distributive property to multiply \frac{3}{2}a by 1+3a.
\left(\frac{3}{2}a+\frac{3}{2}a^{2}\times 3\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply a and a to get a^{2}.
\left(\frac{3}{2}a+\frac{3\times 3}{2}a^{2}\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Express \frac{3}{2}\times 3 as a single fraction.
\left(\frac{3}{2}a+\frac{9}{2}a^{2}\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 3 and 3 to get 9.
\frac{3}{2}a\times 3a+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{2}\times 3a+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Apply the distributive property by multiplying each term of \frac{3}{2}a+\frac{9}{2}a^{2} by each term of 3a-1.
\frac{3}{2}a^{2}\times 3+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{2}\times 3a+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply a and a to get a^{2}.
\frac{3}{2}a^{2}\times 3+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{3\times 3}{2}a^{2}+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Express \frac{3}{2}\times 3 as a single fraction.
\frac{9}{2}a^{2}+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 3 and 3 to get 9.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply \frac{3}{2} and -1 to get -\frac{3}{2}.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{9\times 3}{2}a^{3}+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Express \frac{9}{2}\times 3 as a single fraction.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 9 and 3 to get 27.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{27}{2}a^{3}-\frac{9}{2}a^{2}+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply \frac{9}{2} and -1 to get -\frac{9}{2}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Combine \frac{9}{2}a^{2} and -\frac{9}{2}a^{2} to get 0.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\left(3\times \frac{1}{2}a+3\times \frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Use the distributive property to multiply 3 by \frac{1}{2}a+\frac{1}{3}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\left(\frac{3}{2}a+3\times \frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\left(\frac{3}{2}a+1\right)\left(a+\frac{1}{3}\right)
Cancel out 3 and 3.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}aa+\frac{3}{2}a\times \frac{1}{3}+a+\frac{1}{3}
Apply the distributive property by multiplying each term of \frac{3}{2}a+1 by each term of a+\frac{1}{3}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{3}{2}a\times \frac{1}{3}+a+\frac{1}{3}
Multiply a and a to get a^{2}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{3\times 1}{2\times 3}a+a+\frac{1}{3}
Multiply \frac{3}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{1}{2}a+a+\frac{1}{3}
Cancel out 3 in both numerator and denominator.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{3}{2}a+\frac{1}{3}
Combine \frac{1}{2}a and a to get \frac{3}{2}a.
\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{1}{3}
Combine -\frac{3}{2}a and \frac{3}{2}a to get 0.
\left(\frac{3}{2}a+\frac{3}{2}a\times 3a\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Use the distributive property to multiply \frac{3}{2}a by 1+3a.
\left(\frac{3}{2}a+\frac{3}{2}a^{2}\times 3\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply a and a to get a^{2}.
\left(\frac{3}{2}a+\frac{3\times 3}{2}a^{2}\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Express \frac{3}{2}\times 3 as a single fraction.
\left(\frac{3}{2}a+\frac{9}{2}a^{2}\right)\left(3a-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 3 and 3 to get 9.
\frac{3}{2}a\times 3a+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{2}\times 3a+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Apply the distributive property by multiplying each term of \frac{3}{2}a+\frac{9}{2}a^{2} by each term of 3a-1.
\frac{3}{2}a^{2}\times 3+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{2}\times 3a+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply a and a to get a^{2}.
\frac{3}{2}a^{2}\times 3+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{3\times 3}{2}a^{2}+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Express \frac{3}{2}\times 3 as a single fraction.
\frac{9}{2}a^{2}+\frac{3}{2}a\left(-1\right)+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 3 and 3 to get 9.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{9}{2}a^{3}\times 3+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply \frac{3}{2} and -1 to get -\frac{3}{2}.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{9\times 3}{2}a^{3}+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Express \frac{9}{2}\times 3 as a single fraction.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{9}{2}a^{2}\left(-1\right)+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 9 and 3 to get 27.
\frac{9}{2}a^{2}-\frac{3}{2}a+\frac{27}{2}a^{3}-\frac{9}{2}a^{2}+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply \frac{9}{2} and -1 to get -\frac{9}{2}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+3\left(\frac{1}{2}a+\frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Combine \frac{9}{2}a^{2} and -\frac{9}{2}a^{2} to get 0.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\left(3\times \frac{1}{2}a+3\times \frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Use the distributive property to multiply 3 by \frac{1}{2}a+\frac{1}{3}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\left(\frac{3}{2}a+3\times \frac{1}{3}\right)\left(a+\frac{1}{3}\right)
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\left(\frac{3}{2}a+1\right)\left(a+\frac{1}{3}\right)
Cancel out 3 and 3.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}aa+\frac{3}{2}a\times \frac{1}{3}+a+\frac{1}{3}
Apply the distributive property by multiplying each term of \frac{3}{2}a+1 by each term of a+\frac{1}{3}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{3}{2}a\times \frac{1}{3}+a+\frac{1}{3}
Multiply a and a to get a^{2}.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{3\times 1}{2\times 3}a+a+\frac{1}{3}
Multiply \frac{3}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{1}{2}a+a+\frac{1}{3}
Cancel out 3 in both numerator and denominator.
-\frac{3}{2}a+\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{3}{2}a+\frac{1}{3}
Combine \frac{1}{2}a and a to get \frac{3}{2}a.
\frac{27}{2}a^{3}+\frac{3}{2}a^{2}+\frac{1}{3}
Combine -\frac{3}{2}a and \frac{3}{2}a to get 0.