Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{3}{2}-\frac{3\left(-1\right)}{2}+1-4
Express 3\left(-\frac{1}{2}\right) as a single fraction.
\frac{3}{2}-\frac{-3}{2}+1-4
Multiply 3 and -1 to get -3.
\frac{3}{2}-\left(-\frac{3}{2}\right)+1-4
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}+\frac{3}{2}+1-4
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{3+3}{2}+1-4
Since \frac{3}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{6}{2}+1-4
Add 3 and 3 to get 6.
3+1-4
Divide 6 by 2 to get 3.
4-4
Add 3 and 1 to get 4.
0
Subtract 4 from 4 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}