Solve for x
x = -\frac{17}{7} = -2\frac{3}{7} \approx -2.428571429
Graph
Share
Copied to clipboard
3\left(x+3\right)=2\times 2+2\left(x+3\right)\left(-2\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+3\right), the least common multiple of 2,x+3.
3x+9=2\times 2+2\left(x+3\right)\left(-2\right)
Use the distributive property to multiply 3 by x+3.
3x+9=4+2\left(x+3\right)\left(-2\right)
Multiply 2 and 2 to get 4.
3x+9=4-4\left(x+3\right)
Multiply 2 and -2 to get -4.
3x+9=4-4x-12
Use the distributive property to multiply -4 by x+3.
3x+9=-8-4x
Subtract 12 from 4 to get -8.
3x+9+4x=-8
Add 4x to both sides.
7x+9=-8
Combine 3x and 4x to get 7x.
7x=-8-9
Subtract 9 from both sides.
7x=-17
Subtract 9 from -8 to get -17.
x=\frac{-17}{7}
Divide both sides by 7.
x=-\frac{17}{7}
Fraction \frac{-17}{7} can be rewritten as -\frac{17}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}