Verify
false
Share
Copied to clipboard
\frac{9}{6}+\frac{5}{6}=\frac{1}{8}-1
Least common multiple of 2 and 6 is 6. Convert \frac{3}{2} and \frac{5}{6} to fractions with denominator 6.
\frac{9+5}{6}=\frac{1}{8}-1
Since \frac{9}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{14}{6}=\frac{1}{8}-1
Add 9 and 5 to get 14.
\frac{7}{3}=\frac{1}{8}-1
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
\frac{7}{3}=\frac{1}{8}-\frac{8}{8}
Convert 1 to fraction \frac{8}{8}.
\frac{7}{3}=\frac{1-8}{8}
Since \frac{1}{8} and \frac{8}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{3}=-\frac{7}{8}
Subtract 8 from 1 to get -7.
\frac{56}{24}=-\frac{21}{24}
Least common multiple of 3 and 8 is 24. Convert \frac{7}{3} and -\frac{7}{8} to fractions with denominator 24.
\text{false}
Compare \frac{56}{24} and -\frac{21}{24}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}