Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3}{10}\left(\frac{45}{28}x^{2}y\left(-\frac{49}{75}\right)y^{3}-\frac{-\frac{13}{9}x^{4}y^{5}}{\frac{65}{6}x^{2}y}\right)}{-\frac{55}{8}x^{2}y^{4}}
Multiply x and x to get x^{2}.
\frac{\frac{3}{10}\left(\frac{45}{28}x^{2}y^{4}\left(-\frac{49}{75}\right)-\frac{-\frac{13}{9}x^{4}y^{5}}{\frac{65}{6}x^{2}y}\right)}{-\frac{55}{8}x^{2}y^{4}}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{\frac{3}{10}\left(-\frac{21}{20}x^{2}y^{4}-\frac{-\frac{13}{9}x^{4}y^{5}}{\frac{65}{6}x^{2}y}\right)}{-\frac{55}{8}x^{2}y^{4}}
Multiply \frac{45}{28} and -\frac{49}{75} to get -\frac{21}{20}.
\frac{\frac{3}{10}\left(-\frac{21}{20}x^{2}y^{4}-\frac{-\frac{13}{9}x^{2}y^{4}}{\frac{65}{6}}\right)}{-\frac{55}{8}x^{2}y^{4}}
Cancel out yx^{2} in both numerator and denominator.
\frac{\frac{3}{10}\left(-\frac{21}{20}x^{2}y^{4}-\frac{-\frac{13}{9}x^{2}y^{4}\times 6}{65}\right)}{-\frac{55}{8}x^{2}y^{4}}
Divide -\frac{13}{9}x^{2}y^{4} by \frac{65}{6} by multiplying -\frac{13}{9}x^{2}y^{4} by the reciprocal of \frac{65}{6}.
\frac{\frac{3}{10}\left(-\frac{21}{20}x^{2}y^{4}-\frac{-\frac{26}{3}x^{2}y^{4}}{65}\right)}{-\frac{55}{8}x^{2}y^{4}}
Multiply -\frac{13}{9} and 6 to get -\frac{26}{3}.
\frac{\frac{3}{10}\left(-\frac{21}{20}x^{2}y^{4}-\left(-\frac{2}{15}x^{2}y^{4}\right)\right)}{-\frac{55}{8}x^{2}y^{4}}
Divide -\frac{26}{3}x^{2}y^{4} by 65 to get -\frac{2}{15}x^{2}y^{4}.
\frac{\frac{3}{10}\left(-\frac{21}{20}x^{2}y^{4}+\frac{2}{15}x^{2}y^{4}\right)}{-\frac{55}{8}x^{2}y^{4}}
The opposite of -\frac{2}{15}x^{2}y^{4} is \frac{2}{15}x^{2}y^{4}.
\frac{\frac{3}{10}\left(-\frac{11}{12}\right)x^{2}y^{4}}{-\frac{55}{8}x^{2}y^{4}}
Combine -\frac{21}{20}x^{2}y^{4} and \frac{2}{15}x^{2}y^{4} to get -\frac{11}{12}x^{2}y^{4}.
\frac{-\frac{11}{40}x^{2}y^{4}}{-\frac{55}{8}x^{2}y^{4}}
Multiply \frac{3}{10} and -\frac{11}{12} to get -\frac{11}{40}.
\frac{-\frac{11}{40}}{-\frac{55}{8}}
Cancel out x^{2}y^{4} in both numerator and denominator.
-\frac{11}{40}\left(-\frac{8}{55}\right)
Divide -\frac{11}{40} by -\frac{55}{8} by multiplying -\frac{11}{40} by the reciprocal of -\frac{55}{8}.
\frac{1}{25}
Multiply -\frac{11}{40} and -\frac{8}{55} to get \frac{1}{25}.