Verify
true
Share
Copied to clipboard
-\frac{1}{8}-\frac{2}{-36}=\frac{-10}{144}
Reduce the fraction \frac{3}{-24} to lowest terms by extracting and canceling out 3.
-\frac{1}{8}-\left(-\frac{1}{18}\right)=\frac{-10}{144}
Reduce the fraction \frac{2}{-36} to lowest terms by extracting and canceling out 2.
-\frac{1}{8}+\frac{1}{18}=\frac{-10}{144}
The opposite of -\frac{1}{18} is \frac{1}{18}.
-\frac{9}{72}+\frac{4}{72}=\frac{-10}{144}
Least common multiple of 8 and 18 is 72. Convert -\frac{1}{8} and \frac{1}{18} to fractions with denominator 72.
\frac{-9+4}{72}=\frac{-10}{144}
Since -\frac{9}{72} and \frac{4}{72} have the same denominator, add them by adding their numerators.
-\frac{5}{72}=\frac{-10}{144}
Add -9 and 4 to get -5.
-\frac{5}{72}=-\frac{5}{72}
Reduce the fraction \frac{-10}{144} to lowest terms by extracting and canceling out 2.
\text{true}
Compare -\frac{5}{72} and -\frac{5}{72}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}