Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(-x+2\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}+\frac{5\left(x+1\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(2x-3\right) and \left(2x-3\right)\left(2-x\right) is \left(2x-3\right)\left(x+1\right)\left(-x+2\right). Multiply \frac{3}{\left(x+1\right)\left(2x-3\right)} times \frac{-x+2}{-x+2}. Multiply \frac{5}{\left(2x-3\right)\left(2-x\right)} times \frac{x+1}{x+1}.
\frac{3\left(-x+2\right)+5\left(x+1\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
Since \frac{3\left(-x+2\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)} and \frac{5\left(x+1\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-3x+6+5x+5}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
Do the multiplications in 3\left(-x+2\right)+5\left(x+1\right).
\frac{2x+11}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
Combine like terms in -3x+6+5x+5.
\frac{2x+11}{-2x^{3}+5x^{2}+x-6}
Expand \left(2x-3\right)\left(x+1\right)\left(-x+2\right).
\frac{3\left(-x+2\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}+\frac{5\left(x+1\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(2x-3\right) and \left(2x-3\right)\left(2-x\right) is \left(2x-3\right)\left(x+1\right)\left(-x+2\right). Multiply \frac{3}{\left(x+1\right)\left(2x-3\right)} times \frac{-x+2}{-x+2}. Multiply \frac{5}{\left(2x-3\right)\left(2-x\right)} times \frac{x+1}{x+1}.
\frac{3\left(-x+2\right)+5\left(x+1\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
Since \frac{3\left(-x+2\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)} and \frac{5\left(x+1\right)}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-3x+6+5x+5}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
Do the multiplications in 3\left(-x+2\right)+5\left(x+1\right).
\frac{2x+11}{\left(2x-3\right)\left(x+1\right)\left(-x+2\right)}
Combine like terms in -3x+6+5x+5.
\frac{2x+11}{-2x^{3}+5x^{2}+x-6}
Expand \left(2x-3\right)\left(x+1\right)\left(-x+2\right).