Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(b-3\right)}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}+\frac{b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b+2\right)\left(b-1\right) and \left(b-1\right)\left(b-3\right) is \left(b-3\right)\left(b-1\right)\left(b+2\right). Multiply \frac{3}{\left(b+2\right)\left(b-1\right)} times \frac{b-3}{b-3}. Multiply \frac{1}{\left(b-1\right)\left(b-3\right)} times \frac{b+2}{b+2}.
\frac{3\left(b-3\right)+b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
Since \frac{3\left(b-3\right)}{\left(b-3\right)\left(b-1\right)\left(b+2\right)} and \frac{b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{3b-9+b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
Do the multiplications in 3\left(b-3\right)+b+2.
\frac{4b-7}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
Combine like terms in 3b-9+b+2.
\frac{4b-7}{b^{3}-2b^{2}-5b+6}
Expand \left(b-3\right)\left(b-1\right)\left(b+2\right).
\frac{3\left(b-3\right)}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}+\frac{b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b+2\right)\left(b-1\right) and \left(b-1\right)\left(b-3\right) is \left(b-3\right)\left(b-1\right)\left(b+2\right). Multiply \frac{3}{\left(b+2\right)\left(b-1\right)} times \frac{b-3}{b-3}. Multiply \frac{1}{\left(b-1\right)\left(b-3\right)} times \frac{b+2}{b+2}.
\frac{3\left(b-3\right)+b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
Since \frac{3\left(b-3\right)}{\left(b-3\right)\left(b-1\right)\left(b+2\right)} and \frac{b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{3b-9+b+2}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
Do the multiplications in 3\left(b-3\right)+b+2.
\frac{4b-7}{\left(b-3\right)\left(b-1\right)\left(b+2\right)}
Combine like terms in 3b-9+b+2.
\frac{4b-7}{b^{3}-2b^{2}-5b+6}
Expand \left(b-3\right)\left(b-1\right)\left(b+2\right).