Evaluate
\frac{9\sqrt{30}}{5}-\frac{6\sqrt{5}}{5}-2\sqrt{6}\approx 2.276744977
Share
Copied to clipboard
\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
Rationalize the denominator of \frac{3}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{5}}{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)}{5}\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
Express \frac{3\sqrt{5}}{5}\left(2\sqrt{2}-\sqrt{3}\right) as a single fraction.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}-\sqrt{24}
Express \frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)}{5}\left(\sqrt{2}+2\sqrt{3}\right) as a single fraction.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}-2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}+\frac{5\left(-2\right)\sqrt{6}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{6} times \frac{5}{5}.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)+5\left(-2\right)\sqrt{6}}{5}
Since \frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5} and \frac{5\left(-2\right)\sqrt{6}}{5} have the same denominator, add them by adding their numerators.
\frac{12\sqrt{5}+12\sqrt{30}-3\sqrt{30}-18\sqrt{5}-10\sqrt{6}}{5}
Do the multiplications in 3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)+5\left(-2\right)\sqrt{6}.
\frac{-6\sqrt{5}-10\sqrt{6}+9\sqrt{30}}{5}
Do the calculations in 12\sqrt{5}+12\sqrt{30}-3\sqrt{30}-18\sqrt{5}-10\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}