Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
Rationalize the denominator of \frac{3}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{5}}{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)}{5}\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
Express \frac{3\sqrt{5}}{5}\left(2\sqrt{2}-\sqrt{3}\right) as a single fraction.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}-\sqrt{24}
Express \frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)}{5}\left(\sqrt{2}+2\sqrt{3}\right) as a single fraction.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}-2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}+\frac{5\left(-2\right)\sqrt{6}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{6} times \frac{5}{5}.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)+5\left(-2\right)\sqrt{6}}{5}
Since \frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5} and \frac{5\left(-2\right)\sqrt{6}}{5} have the same denominator, add them by adding their numerators.
\frac{12\sqrt{5}+12\sqrt{30}-3\sqrt{30}-18\sqrt{5}-10\sqrt{6}}{5}
Do the multiplications in 3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)+5\left(-2\right)\sqrt{6}.
\frac{-6\sqrt{5}-10\sqrt{6}+9\sqrt{30}}{5}
Do the calculations in 12\sqrt{5}+12\sqrt{30}-3\sqrt{30}-18\sqrt{5}-10\sqrt{6}.