Evaluate
\frac{119}{40}=2.975
Factor
\frac{7 \cdot 17}{2 ^ {3} \cdot 5} = 2\frac{39}{40} = 2.975
Share
Copied to clipboard
3\times \frac{5}{4}-\frac{\frac{3}{4}}{\frac{5}{6}}+\frac{\frac{3}{4}}{6}
Divide 3 by \frac{4}{5} by multiplying 3 by the reciprocal of \frac{4}{5}.
\frac{3\times 5}{4}-\frac{\frac{3}{4}}{\frac{5}{6}}+\frac{\frac{3}{4}}{6}
Express 3\times \frac{5}{4} as a single fraction.
\frac{15}{4}-\frac{\frac{3}{4}}{\frac{5}{6}}+\frac{\frac{3}{4}}{6}
Multiply 3 and 5 to get 15.
\frac{15}{4}-\frac{3}{4}\times \frac{6}{5}+\frac{\frac{3}{4}}{6}
Divide \frac{3}{4} by \frac{5}{6} by multiplying \frac{3}{4} by the reciprocal of \frac{5}{6}.
\frac{15}{4}-\frac{3\times 6}{4\times 5}+\frac{\frac{3}{4}}{6}
Multiply \frac{3}{4} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{4}-\frac{18}{20}+\frac{\frac{3}{4}}{6}
Do the multiplications in the fraction \frac{3\times 6}{4\times 5}.
\frac{15}{4}-\frac{9}{10}+\frac{\frac{3}{4}}{6}
Reduce the fraction \frac{18}{20} to lowest terms by extracting and canceling out 2.
\frac{75}{20}-\frac{18}{20}+\frac{\frac{3}{4}}{6}
Least common multiple of 4 and 10 is 20. Convert \frac{15}{4} and \frac{9}{10} to fractions with denominator 20.
\frac{75-18}{20}+\frac{\frac{3}{4}}{6}
Since \frac{75}{20} and \frac{18}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{57}{20}+\frac{\frac{3}{4}}{6}
Subtract 18 from 75 to get 57.
\frac{57}{20}+\frac{3}{4\times 6}
Express \frac{\frac{3}{4}}{6} as a single fraction.
\frac{57}{20}+\frac{3}{24}
Multiply 4 and 6 to get 24.
\frac{57}{20}+\frac{1}{8}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{114}{40}+\frac{5}{40}
Least common multiple of 20 and 8 is 40. Convert \frac{57}{20} and \frac{1}{8} to fractions with denominator 40.
\frac{114+5}{40}
Since \frac{114}{40} and \frac{5}{40} have the same denominator, add them by adding their numerators.
\frac{119}{40}
Add 114 and 5 to get 119.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}