Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right)}
Rationalize the denominator of \frac{3\sqrt{3}-2}{2\sqrt{7}+1} by multiplying numerator and denominator by 2\sqrt{7}-1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}\right)^{2}-1^{2}}
Consider \left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{2^{2}\left(\sqrt{7}\right)^{2}-1^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\left(\sqrt{7}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\times 7-1^{2}}
The square of \sqrt{7} is 7.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1^{2}}
Multiply 4 and 7 to get 28.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1}
Calculate 1 to the power of 2 and get 1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}
Subtract 1 from 28 to get 27.
\frac{6\sqrt{3}\sqrt{7}-3\sqrt{3}-4\sqrt{7}+2}{27}
Apply the distributive property by multiplying each term of 3\sqrt{3}-2 by each term of 2\sqrt{7}-1.
\frac{6\sqrt{21}-3\sqrt{3}-4\sqrt{7}+2}{27}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.